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Abstract
Low-power Wide-Area Networks (LP-WANs) are seen

as a leading candidate to network the Internet-of-Things
at city-scale. Yet, the battery life and performance of LP-
WAN devices varies greatly based on their operating fre-
quency. In multipath-rich urban environments, received sig-
nal power varies rapidly with a low-power transmitter’s fre-
quency, impacting its transmission time, data rate and battery
life. However, the low bandwidth of LP-WANs means that
there are hundreds of operating frequencies to choose from.
Among them, we show how choosing a select few of these
frequencies(≤3.55%) effectively triples the battery life when
compared to the rest for LP-WAN devices.

This paper presents Chime, a system enabling LP-WAN
base stations to identify an optimal frequency of operation
after the client sends one packet at one frequency. Chime
achieves this by analyzing the wireless channels of this packet
across many base stations to disentangle multipath and as-
certain an optimal frequency that maximizes client battery
life and minimizes interference. We implement Chime on
a campus-scale test-bed and achieve a median gain of 3.4
dB in SINR leading to a median increase in battery life of
230% (∼1.4-5.7 years), data rate by 3.3× and reduction in
interference of 2.8× over commodity LP-WANs.

1 Introduction

Recent years have seen the emergence of Low-Power Wide-
Area Networks (LP-WANs) as a promising technology to con-
nect the Internet of Things. LP-WAN technologies ( like Lo-
RaWAN [2], SIGFOX [61], 3GPP’s NB-IoT [35], LTE-M [5])
allow devices to send data at low data rate (few kbps) to base
stations several miles away powered by batteries with targeted
lifetimes of 5-10 years. However, recent studies [17, 19, 28]
show a contrasting reality in dense urban deployments where
LP-WAN clients deep inside buildings experience signifi-
cantly lower battery lives (∼1-2 yrs) owing to heavy signal
attenuation. They further show that over 97% of the energy

consumption in an LP-WAN client can be directly attributed
to its radio front-end.

While many parameters influence the battery-drain from
a client’s radio front-end, the main parameter that it can con-
trol is its operating frequency. With the opening up of the
TV whitespaces, narrowband LP-WAN clients have several
hundreds of operating frequencies to choose from [16]. While
there is rich work on spectrum sensing, particularly to avoid
interference, in Wi-Fi [24] and LTE [38], LP-WANs differ in
an important way: base stations span asymmetrically higher
bandwidth compared to clients. This means that base stations
can directly monitor multiple frequency bands and advise
clients on frequencies with minimal interference. Yet, base
stations are unaware of the precise signal power at which an
LP-WAN client’s signal will be received across frequencies.
Our extensive experiments (Sec. 3) over a wide-area cam-
pus testbed show a promising opportunity in this respect: We
show how, when set to a select few frequencies (≤ 3.55% of
all available frequencies), signals from an LP-WAN client
are received at much higher signal power (∼3-4 dB) at base
stations. This increases client data-rate (∼2-8 ×) and reduces
their transmission time, effectively tripling their battery life1

relative to the median frequency. Unfortunately, finding these
optimal frequencies is challenging because they correlate
poorly by interpolating measurements along space, time or
frequency of operation. Further, simply sifting through even
a few frequencies (e.g. as with Wi-Fi [11]) in the hope of
finding the optimal ones would itself drain the battery inordi-
nately.

This paper presents Chime, a solution that explores the
feasibility of offloading the LP-WAN client frequency con-
figuration problem to the more well-equipped LP-WAN base
stations. Chime considers static clients (e.g. sensors) in urban
environments whose multipath characteristics, while complex,
change relatively slowly over time. Chime uses the fact that
while a single base station cannot ascertain the complex mul-
tipath, multiple spatially-distributed LP-WAN base stations

1Battery Life estimates derived from prior energy models (see Sec.3)



can collaboratively identify an optimal operating frequency
for a client based on a single association packet it transmits
when it wakes up, regardless of its initial operating frequency.
Such an association packet is a standard feature of many LP-
WAN protocols [51] posing minimal power overhead for the
LP-WAN client. Chime achieves this by building a novel sys-
tem that uses the wireless channel-state information of this
packet at one frequency received across multiple base stations
to disentangle the multipath and predict the long-term battery
drain for the different operating frequencies. Further, Chime
also predicts the extent of unwanted interference the client
produces at base stations across different frequencies. Thus,
Chime passively infers an optimal client operating frequency,
without prior calibration of the environment or known client
location.

Chime exploits the recent trend of massive and unplanned
deployment of LP-WAN base stations [32]. For instance, Lo-
RaWAN base stations are proposed to be deployed in Comcast
MachineQ set-top boxes [32, 36], meaning that many LP-
WAN base stations will likely be single-antenna and often de-
ployed indoors. Chime proposes a novel algorithm (see Sec. 5)
to synchronize these multiple single or multi-antenna LP-
WAN base stations to emulate a large city-scale distributed
antenna array. In particular, Chime builds on past work in the
cellular context (e.g. R2-F2 [50]) that separates signal paths
using multi-antenna arrays while dealing with new challenges
pertaining to distributed, irregular arrays of antennas and low-
power user devices. Chime first models the received signals
from a client across synchronized base stations to disentangle
the different paths that the signals may traverse as they re-
flect off different objects. These signals combine to reinforce
or cancel each other leading to varying signal power across
the operating frequencies of the client. Chime then estimates
how these separated signal components recombine at different
client frequencies to find the one maximizing battery-life and
throughput, while minimizing interference.

A key challenge in estimating the multipath in urban en-
vironments is receiving time-synchronized phase measure-
ments across multiple LP-WAN base stations to emulate a
distributed MIMO array. While recent work has successfully
demonstrated distributed MIMO for WiFi [22] and cellular
networks [40], LP-WAN packets last over 10× longer and
therefore require much more accurate and long-lasting phase
synchronization. Further, low-power devices experience large
hardware imperfections meaning that the phase of the wire-
less channel varies drastically even within one packet. Hence,
any phase measurements made over time across base stations
would simply appear unsynchronized and random. Chime
overcomes this challenge by never measuring the phase of
a low-power client in isolation, instead always measuring it
relative to a high-power master base station whose signal
propagation characteristics we know a priori. We design this
master base station’s signal so that it can be measured at ex-
actly the same time and frequency as the low-power client,

without significantly interfering with it. Sec. 5 describes this
novel algorithm that directly compensates for phase drifts
over time of the low-power client relative to a reference signal
due to hardware imperfections.

Next, Chime must use the synchronized phase measure-
ments of a client’s association packet to infer how the signal
propagates through environment. However, inferring all paths
of the signals using measurements from a few single-antenna
base stations [53] that are geographically separated is chal-
lenging. Chime exploits the fact that though wireless signals
in urban wide-area networks traverse diverse paths to base
stations at different locations, they often share a very small
number of common large reflectors (e.g. buildings, trees, big
vehicles, etc.). Our approach aims to discover these dominant
reflectors in the environment using the small number of wire-
less channel measurements and model the signal propagation
(Sec. 6), while accounting for variations in the size, shape and
orientation of these reflectors. Chime recombines signals in
these dominant paths across frequencies to accurately predict
an optimal frequency of operation for improved throughput
and lower interference ( Sec. 7).
Limitations and Scope: We emphasize that Chime: (1) Con-
siders static LP-WAN clients (e.g. sensors, metering devices);
(2) Models macroscopic environmental changes but neglects
fleeting reflectors (trade-offs discussed in Sec. 6.2) (3) As-
sumes LP-WAN clients send an association packet to base
station upon waking up. Yet, Chime remains broadly applica-
ble to most sensor networking deployments.

Evaluation and Results: We deploy Chime using LoRa as
the low power technology and Semtech SX1276 chips as the
client RF transceivers. Our base-stations are USRP N210s de-
ployed on six buildings in a 0.7 km× 0.5 km area surrounding
CMU campus. Our results show that:

• Chime provides a net increase in battery-life of 1.4-5.7 years
(230%) achieving at an average 79% of the optimum.
• Chime can increase network throughput by 3.3× compared

to commodity LoRa.
• Chime can reduce interference from LP-WAN clients at base

stations by 2.1 dB, by predicting the weakest frequency.

Contributions: Our specific contributions include:

• A wide-area motivation study that demonstrates the inability
of spectral, temporal and spatial interpolation for identifying
an optimal operating frequency of an LP-WAN client.

• A novel solution for collaboratively identifying an optimal
operating frequency of an LP-WAN client at the base stations
using only one transmitted packet from the client.

• A system that demonstrates significant increase in battery
life and throughput by identifying an optimal frequency of
operation for LP-WAN radios while accounting for multipath,
interference and noise.

• A wide-area deployment across a university campus showing
1.4-5.7 years of increased battery-life for LP-WAN clients.



2 Related Work

Related work can be broadly categorized as follows:
Low-Power Wide-Area Networks: Recent years have wit-
nessed much interest in LP-WANs on both cellular (LTE-
M [5] and NB-IoT [35]) and unlicensed spectrum (Semtech’s
LoRa [2,27,44] and SigFox [39,61]), with some proposals ex-
tending to the TV whitespaces [20]. Recent work on LP-WAN
has explored interference management [19, 23], developing
battery-free solutions [30,45] and system deployments on the
whitespaces [48] to name a few. Chime complements this past
work by considering rapid frequency configuration, a problem
crucial for tackling with rapidly changing channel quality in
urban spaces and improving battery-life.
Spectrum sensing: Cognitive radio and spectrum sensing
solutions are primarily aimed at identifying vacant frequency
bands to minimize interference with other users [56]. Many
of these solutions rely on long-term statistics of channel oc-
cupancy and signal power using temporal [9, 15, 29, 60] and
spatial correlation [12,14,46,59] to make predictions. More re-
cent work attempts to minimize feedback by relying on sparse
recovery techniques such as compressed sensing [34, 43, 55]
or eigen-value based methods [8, 57].

For LP-WANs, channel occupancy, interference and noise
can be directly inferred by the base stations because they span
much larger bandwidth [10] compared to clients. Further, past
work on spectrum sensing does not focus on predicting re-
ceived signal power at the base station from a client across
frequencies. This is precisely Chime’s goal based on measure-
ments at one frequency from a single client radio.
Optimal radio configuration: Perhaps the solutions most
closely related to this paper are systems in the Wi-Fi [41]
and cellular context [50]. CSpy [41] exploits the properties
of OFDM wide-band transmissions from Wi-Fi client on one
Wi-Fi frequency band to accurately model wireless channels
at other Wi-Fi frequency bands. R2-F2 [50] predicts both
channel magnitude and phase of LTE cellular signals based
on measurements in one frequency, exploiting the properties
of OFDM and large multi-antenna base stations.

In contrast the LP-WAN context brings three unique chal-
lenges to the problem of finding an optimal operating fre-
quency. First, there are too many frequencies to choose from
across whitespaces (∼800MHz of bandwidth). For example,
just running through all of them will consume about 6% of
the client’s battery life2. Second, these radio configurations
demonstrate extremely poor correlation across frequency, time
and space, ruling out statistical techniques to estimate the op-
timal frequency of operation (see large-scale study in Sec. 3).
Finally, the vast majority of LP-WAN base stations are single-
antenna [36] and often deployed indoors, ruling out past work
that exploits bulky and expensive multi-antenna array infras-
tructure [7, 50]. Indeed, while Chime builds on R2-F2 [50],

2Available Battery Energy: 2900mAh; 125kHz channels in 800MHz:
6400; Energy of a typical LoRa packet: 100 mAs ; Battery spent = 6.13%

analyzing multipath across distributed single-antenna base
stations for frequency configuration in the LP-WAN context
is its key contribution.

3 Motivation - Empirical Study

To motivate the battery-saving opportunities in finding an
optimal frequency configuration and the core-challenges in
finding it, we present our findings from a detailed empiri-
cal study. We focus on a simple question: “Can an optimal
frequency of operation of an LP-WAN client be found by
exploiting prior measurements made over time, frequency or
space?”. We deploy 20 LoRaWAN clients at multiple loca-
tions periodically sending packets across a month iterating
over 160 frequency configurations in an outdoor campus-scale
testbed (see Sec. 9 for a detailed description of our testbed).
Each client was static and placed in a weather-proof case
in indoor and outdoor locations with signal power measured
from a single base station. While we do not consider mobile
clients, we consider varying outdoor environments over time
to measure channel quality and estimated battery life for each
frequency.
Estimating battery life: Prior studies have shown that the RF
front-end is responsible for most of the battery consumption
of a LoRaWAN device [17]. We use these prior LoRaWAN
battery models [17] to estimate the energy consumed per
packet at different datarates. We then use operational charac-
teristics for the Semtech SX1276 transceiver [4] to map the
signal-to-interference plus noise ratio (SINR) to the appropri-
ate datarates. They show that improving signal strength from
a LoRaWAN client can reduce the transmission time, thus
increasing battery-life. The reason the battery life increases
so much with a few dB improvement in SINR is that, unlike
WiFi, every better data rate in LP-WANs halves the packet
transmission time [4]. Thus, across the SINR thresholds of
these data rates, your client battery life doubles, quadruples
and so on. Our results show high variation in the RSSI of a
LoRa client at base stations across time, frequency and space.
Correlation across time: Upon investigating the data across
clients to the base station, we discover that most frequencies
change in signal strength even across a few minutes (Fig. 2).
Our results (Fig. 3) show that using historical measurements
over different time spans on a set of frequencies to predict the
optimal one (via polynomial interpolation) achieves 38.27%
of the optimum at best. Our detailed study of urban multipath
in Sec. 10.2 shows that this stems from gradual aggregate
change in reflectors in the environment at these timescales.
Correlation across Frequency: Our results reveal that the
optimal frequency-of-operation is extremely difficult to stum-
ble upon with a random guess or even predict using a modest
amount of frequency hopping. As shown in Fig. 1, 50% of all
operating frequencies provide just 27.58% of optimum bat-
tery life while 90% of them still provide only 67.09% of the
optimum. Indeed, only 1.58% of the operating frequencies are



Figure 1: Percentile of battery life: few frequen-
cies have good SINRs providing battery lives close
to the optimum

Figure 2: Channel Variance: Chan-
nel quality varies dynamically across
days and even minutes

Figure 3: Interpolation: percentile
of battery life of the optimum fre-
quency from interpolation

at 90% of the optimum while only 3.55% triple the median
battery life. Further, sampling several frequencies in hope of
finding the top 3.55% would itself incur battery-drain, zeroing
out the benefits. We observe that even adjacent transmission
frequencies perceive a difference of about 20 dB of signal
strength which, in outdoor environments, is enough to make
a LoRa device undetectable. We further evaluate whether
polynomial interpolation from sampling a limited number
of frequencies sufficiently improves battery life and observe
(Fig. 3) that it achieves at best 70.07% of the optimum.
Correlation across Space: We evaluate whether measure-
ments from neighboring clients can be leveraged to find an
optimal frequency of operation for a client. We consider var-
ious number of clients placed in a linear array spaced at 15
cm and predict an optimal frequency of the client in the mid-
dle via polynomial interpolation. As shown in Fig. 3, this
achieves at best 39.90% of the optimum battery life.

4 Overview of Chime

This section provides an overview of Chime’s approach and
challenges. Chime’s primary goal is to accurately measure an
optimal operating frequency for an LP-WAN client by making
it transmit only one packet on one frequency band. It primarily
aims to predict the received signal power of the client across
all frequencies at base stations. Since base stations span a
wide bandwidth, they can readily measure channel occupancy
and noise levels across frequencies, leaving received signal
power from a client as the primary unknown.

Chime’s system architecture is designed as follows: Upon
waking up and for signal association, each LP-WAN device
transmits a beacon packet on its arbitrarily chosen initial fre-
quency of operation (a standard feature of common LP-WAN
protocols). Chime then processes the received signals from
this packet across the base stations at the cloud via a wired
backhaul to infer an optimal frequency of operation. Note
that since the powered base stations and the cloud perform
all computation, this does not impact client battery life. The
nearest base station then reports the estimated frequency to
the client in its acknowledgment of the beacon.

Figure 4: Chime: Frequency configuration for LP-WANs

Assumptions: While Chime does not consider mobile clients,
we do consider dynamic outdoor environments. While Chime
does not model fleeting reflectors in environment, it models
long-term changes in multipath as it re-analyzes the current
multipath based on transmissions from the client beacon and
the master base station.

The rest of this paper describes three challenges in achiev-
ing the above design: (1) Synchronizing Distributed Base
Stations: Chime first develops a synchronization system that
allows multiple base stations to coordinate. In doing so, it
eliminates the time-varying and long-lasting phase errors due
to hardware impediments, such as frequency, timing and phase
offsets of low-cost and low-power wireless hardware (see
Sec. 5). (2) Disentangling Signal Paths: Next, Chime ana-
lyzes the root cause of why signal power from the client would
vary across frequencies in the first place – wireless multipath.
Specifically, signals from the client traverse multiple paths as
they reflect off buildings, trees and other objects before reach-
ing the base stations. Signals along these paths can reinforce
each other or cancel each other, depending on the frequency
of operation. At the cloud, Chime combines measurements
from the distributed array of base stations to decouple the
different paths the signal traversed from the client, even if the
geometry of these base stations is arbitrary and the environ-
ment is multipath-rich (see Sec. 6). (3) Estimating Optimal
Frequency: Chime then recombines the signal components at
all possible operating frequencies to determine their expected
signal power across base stations. Chime can then use this
information, along with the known interference and ambi-
ent noise at these frequencies perceived at base stations to
determine the best frequency-of-operation (see Sec. 7).



5 Synchronizing Base Stations

In this section, we describe our approach to synchronize
transmissions from the LP-WAN client between spatially
distributed base stations. Recall that Chime relies on syn-
chronized phase measured across different base stations from
a single client device to extract signal multipath. However,
these phase measurements experience time-varying errors ow-
ing to the hardware imperfections of LP-WAN radios. Four
distinct hardware impediments contribute to these phase er-
rors: (1) Carrier Frequency offset (CFO): occurs due to subtle
differences between the carrier frequency that any two radios
operate on; (2) Sampling Frequency offset (SFO): occurs due
to small differences between the sampling rate of the two
radios; (3) Detection Delay: is produced because the packet
from the client is detected with different delays across base
stations; (4) Phase Lock Loop (PLL): produces an arbitrary
constant phase offset at each base station’s received signal,
every time it tunes to a frequency. Chime’s synchronization
algorithm seeks to process these wireless channels across
base stations to eliminate these phase errors.

Let the measured channel between the client and the base
station be denoted by h̃C→B1 whose phase is θ̃C→B1 . Mathe-
matically, we can write the phase of the measured wireless
channel θ̃C→B1 at time t as a function of the phase of the true
channel θC→B1 between them, as well as various phase errors.
Let us define the following hardware impediments: (1) Carrier
Frequency Offset (CFO): fC− fB1 as the difference in carrier
frequency between the client and base station. (2) Detection
Delay and Sampling Frequency Offset (SFO): tC− tB1 denote
the effective offset in time owing to detection delay at the
base station and sampling frequency offset. (3) Phase offset
from the PLL: φC−φB1 the phase error owing to the PLL of
the client and base station locking to different values each
time these radios start receiving at a center frequency. The
phase of the channel at time t is:

θ̃C→B1 = θC→B1 − (2π( fC− fB1)t

+2π fC(tC− tB1)+(φC−φB1)) (1)

The rest of this section describes our approach to eliminate
each of the above errors across base stations.

5.1 Eliminating Phase Errors

To eliminate phase errors in Eqn. 1, Chime leverages multiple
base stations. Specifically, we recall that a client’s transmis-
sion at time t can be recorded by multiple base stations, which
can measure the corresponding wireless channels. Chime
eliminates hardware impediments by exploiting the common
phase shifts they induce to these channels.

Mathematically, Chime estimates the wireless channel at a
second base station B2 from the same client at the same time

t. This wireless channel is written as:

θ̃C→B2 = θC→B2 − (2π( fC− fB2)t

+2π f (tC− tB2)+(φC−φB2)) (2)

By subtracting Eqn. 1 and Eqn. 2 above, we get:

θ̃C→B2 − θ̃C→B1 = θC→B2 −θC→B1

+2π( fB2− fB1)t +2π f (tB2 − tB1)+(φB2 −φB1) (3)

Note that the above difference in phases is independent
of hardware impediments owing to the client, i.e. its center
frequency fC, time-delay tC or initial phase φC. However, as
it is dependent on the impediments of the two base stations,
Chime still needs to estimate the phase errors due to hardware
differences between pairs of spatially distributed base stations.

To estimate these phase differences, Chime relies on a mas-
ter base station (BM , one of the base stations) at a known
location. The master sends a signal at the same time t and fre-
quency fC as the client (we address the challenges in achiev-
ing this without causing collisions in Sec. 5.2). We then mea-
sure the difference in phase at the two base stations of the
channel from the master base station:

θ̃BM→B2 − θ̃BM→B1 = θBM→B2 −θBM→B1

+2π( fB2− fB1)t +2π f (tB2 − tB1)+(φB2 −φB1) (4)

Notice that Eqn. 3 and Eqn. 4 have the same effect of hard-
ware impediments on their right-hand side. By subtracting
these two phase values, we obtain a quantity independent of
hardware offsets:

θ̃C→B2 − θ̃C→B1 − θ̃BM→B2 + θ̃BM→B1

= θC→B2 −θC→B1 −θBM→B2 +θBM→B1 (5)

The above quantity is independent of hardware offsets of
the client and base stations and therefore directly captures
the multiple signal paths along which the signal traverses.
Assuming the channel between master base station and other
base stations can be computed (described in Sec. 5.2) at the
same time and frequency as the client, the term θBM→B1 −
θBM→B2 can be compensated for. Chime therefore estimates
the following product of channels hconj

12 – a complex number
we call the offset-free channel whose phase value is exactly
θC→B2 − θC→B1 – a function purely of the client and base
stations (note: (.)∗ is the complex conjugate).

hconj
12 =

h̃C→B2(h̃C→B1)
∗h̃BM→B1hBM→B2

h̃BM→B2hBM→B1

(6)

Chime can then use this offset-free channel, which is free of
all time-varying phase offsets, to disentangle signal paths from
the client, without being impacted by hardware impediments
(Sec. 6). Note that while the phase of a single offset-free
channel is ambiguous due wrapping of phase over 2π, we
combine the information across multiple such channels to
estimate the multipath. This approach resembles that of many
phase-based localization systems [26, 49, 54].



Figure 5: Wireless channels between client and base stations

5.2 Removing offsets between base stations

To obtain offset-free channels as in Eqn. 6 above, the base
stations need to measure channels from the master base sta-
tion at the same time and frequency as the client that is being
tracked . However, doing so would result in collision between
the master base station packet and client packet, causing nei-
ther of their packets to be decoded. As a result, one needs to
carefully design transmissions of master base station to avoid
collision with the client transmissions.

A naive approach would be to transmit the master’s signal
a short time interval prior to every client’s transmission. By
picking an extremely short interval between the reference
and client, one can neglect the additional phase drift that
may accumulate. While this approach is commonly used in
distributed MIMO in Wi-Fi [33] and cellular [42], it does not
apply to LP-WANs. This is because LP-WAN packets span
hundreds of milliseconds [2, 13, 21]. Such long packets cause
phase measurements to drift significantly within a packet
rendering a priori synchronization futile. Thus, Chime needs
a mechanism to estimate phase measurements at the same
exact time and frequency from both reference and client by
analyzing their packets transmitted concurrently.

Chime circumvents this challenge by designating one of
the base stations to transmit a concurrent signal on an adja-
cent frequency band relative to the client. This master base
station transmits its signal at the same time as the client, send-
ing a known sequence in parallel with its transmission. The
base stations can thus estimate the wireless channels of both
the master and client transmissions at the same time, albeit
across adjacent frequency bands. Chime then extrapolates the
wireless channels of both the master and client to estimate
its phase value at the guard band between them. While prior
works [42,58] have used beacon-based synchronization mech-
anisms, Chime uses piece-wise cubic spline extrapolation of
both the magnitude and phase of the wireless channels across
these bands for the master base station and client to estimate
the magnitude and phase at the guard band in-between. Given
that these estimates occur at the same time and frequency (i.e.
the guard band) across both the master and client, we can now
use them in Eqn. 6 to accurately synchronize base stations

and eliminate the effect of hardware imperfections.
When does the master base station transmit? To facilitate
the master base station to decode the preamble and transmit
simultaneously on an adjacent channel, Chime ensures that
the association packet’s preamble is sufficiently long to ac-
commodate this. An alternative option in the cellular context
(e.g. NB-IoT) is to allocate dedicated spectrum for the base
station alongside the client’s association packet.
Why does interpolation work? Interpolation across fre-
quency to estimate the channel seems to have inherent con-
tradiction with our motivation results in Section 3. However,
it is a well known fact that outdoor channels, have a coher-
ence bandwidth of about 250-500 KHz. Thus, while the chan-
nel demonstrates frequency-selective fading over large band-
widths, the narrowband channel over 125 KHz is relatively
flat [37]. Thus, interpolation of client and master base station
channel will give a reasonable estimate of their channel at
the guard band. Note that since the base stations are high
powered agents, they can indeed transmit constantly and will
have significantly larger transmit power than the clients. Thus,
with a dense enough deployment of base stations (expected
for LP-WANs [3, 6, 36]), the signal of the master base station
will be received at other base stations.

6 Separating Signal Paths

Given the wireless offset-free channels of the form hconj
jk from

a client to a base station pair ( j,k), we next seek to separate
the set of signal paths that signals traverse from the clients
to the n base stations. The key challenge in doing so is to
decouple the large number of signal paths using channel mea-
surements from a small number of base stations. Fortunately,
our results in Sec. 10 as well as extensive past literature [50]
in outdoor urban wireless networks demonstrate that wireless
channels tend to have small number of dominant paths. As a
result, Chime exploits this sparsity to identify the dominant
signal paths using only a small number of available base sta-
tions. While there have been solutions proposed for WiFi [41]
and cellular networks [50], these techniques either model
certain behavior of signals in indoor environment or require
heavy infrastructure such as an array of antennas unavailable
at the base station. Furthermore, LP-WAN base stations are ar-
ranged irregularly, making it challenging to employ traditional
antenna array algorithms.

6.1 Irregular Distributed Arrays

Chime separates multiple signal paths by actively modeling
wireless signal characteristics of a distributed array of base
stations with an irregular, but known geometry. To do so,
Chime uses a maximum-likelihood [18] approach to identify
the best propagation characteristics that fit the observed chan-
nels. In particular, given that only a small number of signal



Figure 6: Virtual Sources: Reflected paths can be modeled
as virtual sources that are mirror images of the transmitter

paths dominate (Sec. 10.2), Chime iterates over a set of m
virtual source coordinates (xp,yp,zp) for p = 1, . . . ,m, which
denote candidate locations for the client as well as one virtual
source for each dominant path from a reflecting surface. As
shown in Fig. 6, these virtual sources are simply the mirror
image of the source about any reflecting surface. One can then
compute the distances from these virtual sources to each base
station (whose coordinates are known) to compute the total
path length experienced by each reflected signal component.
Chime then uses this information to compute the optimal
attenuations and phase-shifts for each signal path that fit the
observed channels and the given geometry of virtual sources.
It then identifies and outputs the set of virtual sources, atten-
uations and phase shifts that best-fit the observed channels.
Key to Chime’s algorithm is an approach that both carefully
chooses the number of paths m and efficiently searches over
the space of virtual source coordinates.
Problem Formulation: Mathematically, Chime’s algorithm
begins by iterating over a set of candidate locations for the
virtual sources corresponding to a client. For ease of exposi-
tion, we make two simplifying assumptions which we will
relax later in this section: (1) Dominant reflectors are large,
therefore shared by all base stations; (2) Dominant reflec-
tors are planar and infinite. We further only consider single-
bounce reflectors and assume multi-bounce reflected paths
can be broken down into equivalent single-bounce reflec-
tors. Let us assume for the moment that there are m such
sources with known coordinates: (xp,yp,zp) for p = 1, . . . ,m.
Let us denote Bq to be the coordinates of the n base sta-
tions. Consider a signal along path p traversing a distance
of dp j = ||(xp,yp,zp)−B j|| to base station j from its virtual
source (xp,yp,zp). Then the phase of the channel from this
source is of the form −2π

dp j
λ

and magnitude 1
dp j

, where λ is

the signal wavelength [47]. Let hcon j
jk denote the offset-free

channels (see Sec. 5) received by each pair of base stations
(i, j). Recall that hcon j

jk contains the product of channels to
two base stations hC→B j h

∗
C→Bk

so the phases of each pair of
signal paths subtract and their magnitudes multiply. Hence,
hcon j

jk is a weighted sum of complex numbers whose phase is

of the form −2π
dp j−dqk

λ
and magnitude is of the form 1

dp jdqk
,

whose weights are unknown.
At this point, we formulate the following minimization

problem that attempts to find the complex weights, αp,q, based
on how well they fit the observed channels:

min
{αp,q}

ε∣∣∣∣∣∣[hconj
jk

]
1×n2
− [αp,q]1×m2 Em2×n2

∣∣∣∣∣∣≤ ε

Em2×n2 =

[
1

dp jdqk
e−i2π

dp j−dqk
λ

]
p,q=1,...,m; j,k=1,...,n

where i =
√
−1. Given dp j’s and dqk’s, the above opti-

mization problem can be solved in closed-form using a least-
squares fit as (note: (.)pinv is pseudo-inverse.):

α
est =

[
hconj

jk

]
1×n2

Epinv
m2×n2 (7)

At this point, we can estimate the goodness-of-fit of
the assumed coordinates of the virtual sources correspond-
ing to the client {(xp,yp,zp)}p=1,...m based on how well
the estimated channels agree with the observed channels.
We define the goodness-of-fit of virtual source coordinates
{(xp,yp,zp)}p=1,...m as:

G({(xp,yp,zp)}p=1,...m) = 1/
∣∣∣∣∣∣[hconj

jk

]
−α

estE
∣∣∣∣∣∣

Thus, our problem of disentangling the multipath reduces to
finding the coordinates of virtual sources in a given geograph-
ical domain D , Copt = {(xopt

p ,yopt
p ,zopt

p )}p=1,...,m as:

Copt = arg max
{(xp,yp,zp)}p=1,...,m∈D}

G({(xp,yp,zp)}p=1,...,m)

Run-time Optimization: Running the above optimization
through an exhaustive grid search is prohibitive. Instead,
Chime solves it numerically using a stochastic gradient de-
scent algorithm [25] that begins optimization at a few of initial
points (e.g. a coarse grid) in parallel. We then perform a finer
numerical gradient-based search at these points and report
the coordinates for which we obtain the global maximum of
goodness-of-fit. Also, prior information about the topography
of the deployment space, known reflectors, and location of
the transmitter, while not necessary, can speed up the search
process. Upon optimization, Chime can fully characterize the
m dominant taps by the virtual source coordinates Copt and
corresponding phase shifts: αopt =

[
hconj

jk

]
Epinv.

6.2 Designing Optimization Parameters

Channels are Sparse and Changing: Key to our optimiza-
tion above is an accurate estimate of the number of dominant
signal paths m. Choosing a small number of signal paths
would lead to inefficiency and a poor overall goodness-of-fit
relative to the observed wireless channel. However, choosing



a large number of signal paths leads to over-fitting, or requires
large number of base stations, and eventually, a poor estimate
of the optimal frequency to operate on. Fortunately, our re-
sults in Sec. 10.2 demonstrate that the number of dominant
signal paths in practical outdoor settings is small, a median
of 2, beyond which we tend to over-fit. Furthermore, given a
number of base stations, estimating a certain number of dom-
inant paths give the best results. We analyze this optimum
sparsity in Sec. 10.3 empirically and use the appropriate m
for performing the optimization. In Sec. 10.2 we show that
even though multipath is sparse, the dominant taps change
over the time-scale of minutes causing the optimal frequency
to change. Of course, most large reflectors (buildings) do not
move to cause this change. Hence, we surmise this is the
aggregate effect of one or more smaller static objects (e.g.
parked vehicles, objects close to the transmitter/receiver) that
move at these time scales.

Multiple, Non-Linear and Fleeting Reflectors: Note while
reflecting surfaces may be non-linear in the real world, in
our model, we only consider linear reflectors. We thus model
the multiple reflections off a non-linear reflector or multiple
reflectors as a composite linear reflector. Indeed, while this
assumption may sometimes lead to erroneous estimation of
reflectors [52] due to increased path length, we see that by
expanding the physical size of our search space for virtual
sources, the error in estimating multipath is minimal. We also
ran simulation based experiments which attempt to estimate
multiple reflections with a single reflector over a larger search
space (due to larger path distances). The results show that
error in finding the virtual source is negligible as long as the
peak is 7 dB above noise across the ISM band. Practically,
Chime only needs a source which exhibits similar distances
to the base stations as the different paths to the base stations.
We also ignore fleeting and small reflectors, which occur only
for one of the base stations, since they have minimal amor-
tized effect across the received signals of the base stations.
Our results in Sec.10.3 show that these assumptions work
reasonably well for urban environments.

Finite Reflectors: Our approach above assumes infinite pla-
nar reflectors which is not true in real world. To encode the
finiteness of the reflectors we can introduce a new parameter
βp which is a boolean vector of length n to each virtual source
p where βp j=1 denotes whether the signal from virtual source
p reaches base station j. This means that

Em2×n2 =

[
βp jβqk

dp jdqk
e−i2π

dp j−dqk
λ

]
p,q=1,...,m; j,k=1,...,n

would be sufficient to model finite reflectors. However,
simply looking for all possible β is inefficient. Instead we add
two new parameters Φk and ψk which represent the starting
angle and spanning angle of the planar reflector. We can
reduce the possible β by imposing practical and geographical
constraints. This means we only have to optimize for 2m extra
parameters instead of nm. We can estimate the β matrix by

Figure 7: Chime’s algorithm in a nutshell

using the source locations{xk,yk,zk} and the angles Φk,ψk
and applying the correct constraints. This means that the
number of variables does not increase significantly and can
be modeled with additional base stations.

Mobility: While our solution does not consider mobility of
client, we believe even with the knowledge of location of the
client device, we cannot use the reflectors computed during
previous run of Chime to assist the next run. This is because
LP-WAN devices transmit very rarely (about every 15 min-
utes or more), which according to our observations in Sec. 3
demonstrate change in multipath of even static clients. This
will lead to a complete change in the reflectors of the client
device. Thus, under Chime’s constraints, we will indeed need
to recompute every reflector again.

Extending to Multiple Frequencies To recover the domi-
nant signal paths using the algorithm above, one would need
to ensure that m < n, i.e. the number of dominant signal paths
is sparse and well below the number of base stations in the
vicinity of the LP-WAN client. We note that not all these base
stations need to be able to decode the client’s transmission at
the highest rate – they can simply compute wireless channels
from the preamble. However, in the instance that too few base
stations are available in the vicinity of the client, Chime can
improve its performance by measuring wireless channels at
more frequency bands, e.g. by requesting the client to hop
across a few bands. In effect, the additional measurements
across base stations makes sure our optimization in Eqn. 7 is
not under-determined.

7 Estimating Optimal Frequency

Having disentangled the multiple signal paths emerging from
the client, Chime can estimate an optimal frequency of op-
eration by recombining these signal paths across the various
available transmission frequencies. It can then identify the
operating frequency by choosing the transmission frequency



with the highest signal power, while also accounting for other
factors such as noise and interference.

Computing Signal Power The first step to selecting the
best operating frequency is to determine the signal power
at each frequency band. In particular, given the offset-free
channels hconj

jk between a pair of base stations ( j,k) from
Sec. 5 and the multipath propagation characteristics ({αp,q}
and {(xp,yp,zp)}) from Sec. 6, we write the offset-free chan-
nel hconj

jk,@ f at any frequency f and wavelength λ f as:

hconj
jk,@ f = [αp,q]1×m2 E , where:

E =

[
1

dp jdqk
e
−i2π

dp j−dqk
λ f

]
p,q=1,...,m; j,k=1,...,n

Here, d denotes the distances between virtual sources and
base stations as defined in Sec. 6.

Notice that the magnitude of |hconj
jk,@ f |2 is simply the product

of the signal power from the client at base station i and base
station j. However, Chime needs to recover the individual
power of the wireless channels at each frequency to compare
them across frequencies. Extracting these individual powers
from hconj

jk,@ f is challenging, because its phase was carefully
constructed to remove any hardware impediments.

Chime addresses this challenge by performing its algorithm
in Sec. 6 on a second set of input wireless channels. We define
these wireless channels, hrat

jk as:

hrat
jk =

h̃C→Bk(t)h̃BM→B j(t)hBM→Bk

h̃C→B j(t)h̃BM→Bk(t)hBM→B j

Notice that the phase of hrat
jk is identical to that of hconj

jk ,
and is therefore also free from phase errors due to hardware
impediments of LP-WAN radios. Its magnitude however is
different – the ratio of the magnitude of the wireless chan-
nels to each base stations. One can therefore apply Chime’s
algorithm (Sec. 6) with hrat

jk instead of hconj
jk as input and obtain

as output the corresponding wireless channel at frequency f :
hrat

jk,@ f . It is then easy to see that the power of the signal from
the client to base stations j and k on frequency f is:

|hC→B j ,@ f |2 = hconj
jk,@ f /hrat

jk,@ f (8)

|hC→Bk,@ f |2 = (hconj
jk,@ f )

∗hrat
jk,@ f (9)

Selecting Optimal Radio Configuration Beyond signal
power at the target frequency that Chime computes, data rate is
also influenced by ambient noise, interference and attenuation
introduced by the transmit/receive chains across frequencies.
Fortunately, LP-WAN base stations can easily measure all
these quantities as they span a wide band of frequencies [31].
Chime therefore uses these measurements to compute the
effective SINR of the client across frequencies to choose the
one best optimizing its battery life.

8 Extensions of Chime

While Chime is designed to compute an optimal frequency
for an LP-WAN client to conserve battery-life, its approach
can be used to complement related problems in LP-WAN:
Coherent Combining: In addition to magnitude, recall that
Chime also provides the relative phase of wireless channels
between base stations. This is useful in computing the ex-
pected wireless channels when the base stations collaborate
to coherently combine the received signal across base stations
in order to decode them (e.g. Charm [17] performs coherent
combining in the LP-WAN context to decode weak trans-
missions from clients). By knowing both the magnitude and
relative phase of wireless channels at each base station across
frequencies, Chime can identify the frequency-band for which
the expected power of the coherently combined signal will
be maximum. Hence, Chime improves the performance of
coherent combining in LP-WANs (Sec. 10.5).
Finding Nulls: Just as Chime can find the radio configu-
ration where a client’s signal power to any base station is
maximum, it can also find frequency where signal power is
minimum. This is valuable in nulling interference from an
unwanted client at a base station by requesting it to transmit
at a frequency where interference is lower with one or more
base stations. Sec. 10.6 presents results evaluating Chime’s
performance in finding nulls from a client to base station.

9 Implementation and Evaluation

We implement Chime on Ettus USRP N210s as base sta-
tions and reference transmitter for removing phase offsets
(see Sec. 5).These base stations measure phase based on
our customized code in UHD to measure phase for Chirp
Spread Spectrum modulated data at line rate. We use Semtech
SX1276 chips as LoRaWAN client transmitters. Each picks a
single frequency from the ones supported by the transmitter
and transmits a small “chirp" for the base stations to hear. The
master base station (USRP N210) is designed to transmit on
an adjacent band all the time for convenience of implementa-
tion(see Sec. 5.2). We set the client spreading factor to 10 bits
per symbol and the bandwidth to 125KHz (standard mode of
operation). Each base station has a reliable link to the cloud
via a wired backend. Chime’s code is implemented in MAT-
LAB/C++ using an in-house UHD-compatible LoRaWAN
demodulator and processes the received wireless channels
across base stations at the cloud. We only consider infinite
length reflectors to evaluate our system. Note that we perform
coherent combining across base stations only for Sec. 10.5
where we combine Charm with Chime.
Wide-Area Deployment: Unless specified otherwise, we
evaluate Chime over four months across CMU campus and
surrounding neighborhoods spanning an area of 0.5km ×
0.7km in Pittsburgh leading to complex multipath scenarios
as shown in Fig. 8. Our deployment consists of 11 LP-WAN



Figure 8: Chime Deployment: Red circles
denote base station locations

Figure 9: Phase Stability: Phase of
offset-free channel hconj

jk in multipath-
rich scenarios is stable across SINRs

Figure 10: Multipath Sparsity: His-
togram of # dominant paths shows sparsity
of multipath in urban environment

base stations serving different areas, all placed in different
buildings – 5 indoors and 6 outdoors. The campus has a va-
riety of tall buildings, trees, other large occlusions and hilly
terrain. Our frequencies of operation include the 915 MHz
ISM band and some bands in 500 MHz TV white spaces (FCC
experimental hardware license). We deploy up to 30 static
LoRaWAN clients at various locations (changing every few
days) to collect thousands of wireless channel traces across
distances relative to the base stations. While each client is not
mobile, we do consider a dynamic environment. Each client
transmits at a rate of 5-15 packets per hour. Further, clients
chose an arbitrary frequency of operation for their initial as-
sociation packet. Note that our experiments in Sec. 10.2 are
in a 0.36 km2 downtown area of Pittsburgh to study multipath
(described further in Sec. 10.2).
Ground Truth & Baseline: We obtain ground truth by mak-
ing clients hop on all frequencies to find an optimal one.
However, only the wireless channel corresponding to a single
packet on one frequency band is provided to Chime, unless
stated otherwise. We compare Chime against three baseline
systems: (1) Standard LoRaWAN which chooses initial fre-
quency arbitrarily; (2) Interpolation across frequency (as de-
scribed in Sec. 3), when data across multiple frequencies is
available; (3) Charm, a system that performs coherent com-
bining across base stations [17].
Runtime: Our current implementation takes ∼ 31 sec to ex-
plore the search space of reflectors on a desktop with Core-i7
8700K and Nvidia GTX 1060 GPU with 64 GB RAM where
E matrices are prefetched in memory for search space of vir-
tual sources. This could be significantly optimized with prior
knowledge of the reflectors (topography) or parallelization on
a GPU cluster – a task for future work.

10 Experimental Results

10.1 Stability of Phase
Setup: An LP-WAN transmitter is moved across 25 locations
in our wide-area testbed and multiple traces are collected
from base stations spread across 4 months for static clients.

We remove the phase offsets and plot the mean and standard
deviation of the instability (standard deviation) in the phase
of the offset-free channel (Sec. 5) across pairs of base stations
for various SINRs.
Results: Fig. 9 shows the phase measurements of the offset-
free channel are stable across pairs of base stations with a
mean standard deviation of less than 5×10−3 even at SINRs
as low as -21 dB. This validates the stability in measurement
of the phase of offset-free channels at low SINRs.

10.2 Multipath in Urban Environments

We next study the multipath in the downtown of a large city
in the U.S. to validate the sparsity assumption in Sec. 6.1.
Setup: We have a base station transmit wide band chirps of
20 MHz moved over a path length of 5 km in a urban down-
town environment. Another base station is used to receive
these signals. We then collect data from over 600 different
GPS-tagged locations over 0.36 km2. We correlate with trans-
mitted chirp to estimate the number of taps in the signal. We
also keep a transmitter-receiver pair 600 m away in a NLOS
suburban environment to evaluate the change in sparsity of
multipath and the associated channels over time.3

Results: Fig. 10 shows that almost 77% of locations have
less than 3 dominant taps in the wireless channel affecting
the signal, showing the channel is predominantly sparse as
we assume. We also note that at least one of these dominant
taps change over time scales of a few minutes, even for static
clients. We surmise this is due to some smaller static reflectors
in the environment moving gradually over time in aggregate
leading to a small number of gradually moving taps. Fig. 11
shows how long the paths between the client and the base
station typically are stable. We define persistence of a path
as the time until which atleast 80% of the energy received
remains within the original path components. We see that with
90% likelihood the sparse multipath changes within 10 mins.
If we ignore the most dominant path, we see that secondary
reflectors change even faster.

3Our data and code are available at [1].



Figure 11: Path Persistence:
Sparse multipath is unstable across
minutes

Figure 12: SINR Goodness-of-
Fit: CDF of predicted vs. actual
SINR across base stations

Figure 13: (Left) Gain in SINR(dB) by using Chime vs.
median frequency of operation; (Right) Battery life of
Chime vs. temporal interpolation technique

10.3 Chime’s Gains across Base Stations

We demonstrate the gains achieved by using Chime for iden-
tifying an optimal frequency of operation.

Setup: We collect 20 measurements of 100 packets each,
spread across 3 months from 5 locations across campus at
six base stations at a given frequency fi. Using these pack-
ets, we compute the offset-free channel for each of the base
station pairs. We then apply Chime’s algorithm to compute
an optimal frequency-of-operation. We compute the gain (in
dB) as the improvement of SINR at the computed operation
frequency vs. the median SINR across all possible frequen-
cies. Finally, we measure the improvement in the battery
life of LP-WAN transmitters due to lower transmission time
by using Chime as the percentage of maximum battery life
achievable by choosing the optimum frequency of operation.
The results are averaged over choice of initial frequency.

Sparsity: As we increase the number of base stations,
more and more complex multipath patterns emerge. This
is to be expected, given that more base stations are influ-
enced by a larger number of reflectors. This means that 2
multipath sources are not enough to correctly estimate the
complex multipath patterns and hence more multipath sources
are required to assess the optimum frequency of operation.

# Base Optimal
stations Sparsity

4 2 sources
5 3 sources
6 4 sources

This can usually be rectified by
adding more variables (estimating
more sources) which can result in
a better fit for the equations. The
table shows the median optimum
sparsity vs. # base stations:

SINR Prediction: Next, we measure how accurately
Chime predicts the accurate SINR of the optimal frequency
of operation, across the 915 MHz ISM band. Specifically, we
compute the CDF of the difference in SINR between the pre-
dicted and actual SINR at the optimal frequency of operation.
Fig. 12 plots the results across number of base stations with
only 2.7 dB of difference (median) with 6 base stations and 4
multipath(MP) sources considered. To put this in perspective,
the SINR at an arbitrary frequency would differ from the op-
timal by as much as 6.1 dB (median). Our results once again

validate Chime’s sparsity assumptions and our modeling ap-
proach. It shows that the gap between the association packet
and transmission (∼10-15 ms) is too short for environmental
dynamism to change the channels for static clients.

SINR Gain: Next we analyze the gain in SINR achieved by
Chime with increasing number of base stations. Our baseline
for the gain is the median frequency-of-operation which emu-
lates choosing an operation frequency at random. As shown
in Fig. 13, we achieve a gain of about 2.4 dB with 4 base
stations which increases as we increase the number of base
stations (with optimum sparsity). With 6 base stations, we
achieve a mean increase in the SINR of about 3.4 dB.

Battery Life Gain: Finally, we compare the battery life4

achieved by Chime with that of choosing frequency of oper-
ation based on temporal interpolation. As shown in Fig. 13,
we see a stark improvement of 107% in the battery life using
Chime which provides a mean of 79% of the optimum over
the baseline approaches. This result shows that Chime can
provide high gains for dense urban deployments.

These gains in signal power allow transmitters to send at
faster rates and reducing the transmission time of the LP-
WAN clients. We use methodology explained in Sec. 3 to
estimate the expected battery life of the client when streaming
sensed data at the optimal data rate to the base station. As
shown in Fig. 14, we see a 230% increase in the battery life
of the LP-WAN transmitters over the median frequency of
operation which is significant for rarely transmitting devices
whose lifetime increases from 2.5 years to 8.2 years.

10.4 Chime’s Gains across Frequency
We study the gain in SINR and improvement in data rate that
can be obtained by sampling more frequencies to further help
the base stations to find an optimal frequency using Sec. 6.2.

Setup: We collect phases from 6 receiver base stations at
frequencies ranging from 902-928 MHz with an interval of
500 kHz. The frequencies chosen in each case for training
are randomized to ensure correctness and the gains obtained
in each case are averaged across 5 client locations across

4Battery Life estimates derived from prior energy models (see Sec.3)



Figure 14: Gain in battery life
across # messages per hour:
Battery life increases 1.4-5.7
years for LP-WAN clients

Figure 15: Gain in SINR and
improvement in datarate vs.
interpolation for # of frequen-
cies used for training

Figure 16: Chime +
Charm: Improvement in
Gain(dB) when Charm is
assisted by Chime

Figure 17: Nulling of
unwanted interference
leads to improved data
rate for legitimate client
with Chime

multiple weeks. We compute the improvement in data rates
achieved due to higher signal strength. As we are sampling
multiple frequencies, our baseline will be the spectral interpo-
lation using these frequencies (as described in Sec. 3).

Results: We observe a steady increase in gain with increas-
ing number of frequencies used for training which improves
battery-life. The improvement is significantly more than that
of the baseline. An important side-benefit of Chime is the
improvement in data rate which also progressively increases.
As the SINR of the received signal improves, it enables clients
to transmit at faster data rates. While LP-WAN clients are
infrequent and low-rate transmitters, this improves overall
spectrum utilization in congested large-scale deployments.

10.5 Chime with Coherent Combining
In this experiment, we measure Chime’s performance in im-
proving Charm’s [17] capability of coherent combining.

Setup: We perform the same experiment as Sec. 10.3. How-
ever, to compute the frequency-of-operation, we optimize for
the sum of the SINR at the base stations instead of an indi-
vidual base station. Then, we coherently combine the signals
at that frequency as shown in [17]. The base line is näive
Charm [17] which chooses a frequency randomly.

Results: Fig. 16 shows a median SINR increase of 4.5 dB
with six base stations which can significantly improve the
battery life of LP-WAN clients in urban environments. As ex-
pected, the improvement is much better than that by choosing
a random frequency of operation by about 2.5-3 dB.

10.6 Can Chime Null Interference?
This section predicts nulls, i.e. a bad frequency of transmis-
sion for an interfering client to a given base station to provide
improvement in signal strength of legitimate client.

Setup: We perform the same experiment as Sec. 10.3. We
measure the reduction in interference by using Chime to cor-

rectly estimate the frequency with the worst channel estimate.
We compute the reduction in Interference to Noise Ratio
(INR) for a legitimate client in another channel. We measure
the resulting gains in data-rate for the legitimate transmitter
due to reduction in interference by the interferer.

Results: Fig. 17 shows that we can achieve up to 2.8× gain
in the data rates of the legitimate transmitter by allocating
the interferer a null frequency. We further show that as we in-
crease the number of base stations, the accuracy of estimating
nulls increases which shows that we can get better and better
gains for the legitimate transmitter.

11 Conclusion and Future Work

This paper presents Chime, a system that allows an LP-WAN
client to choose its optimal frequency simply by sending a
single packet on one frequency band. Chime achieves this
by analyzing the paths signals traverse from the client to dis-
tributed and coordinated base stations. Chime was evaluated
in a campus-scale testbed, leading to a median battery life
increase of 1.4-5.7 years over commodity LP-WANs.

While Chime’s emphasis is on optimal frequency, we be-
lieve it provides the building blocks for a comprehensive
interference management and distributed MIMO system built
for LP-WANs. Designing such an end-to-end system to pro-
vide enormous battery savings to low-power clients, while
respecting their hardware limitations remains an important
problem for future work.

Acknowledgments
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