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Abstract
Wireless sensors have enabled a number of key applications. Due

to their energy constraints, wireless sensors today communicate

occasional short samples or pre-determined summary statistics of

the data they collect. This means that computing every additional

statistic at high fidelity incurs additional communication and energy

overhead. This paper presents Joltik, a framework enabling general,

future-proof, and energy-efficient analytics for low power wireless

sensors. Joltik is general in that it summarizes sensed data from

low-power devices without making assumptions on which specific

statistical metric(s) are desired at the cloud and is future-proof,
meaning it supports new, unforeseen metrics. Joltik is built upon

recent theoretical advances in universal sketching, which can enable

a Joltik sensor node to report a compact summary of observed

data to enable a large class of statistical summaries. We address

key system design and implementation challenges with respect to

communication, memory, and computation bottlenecks that arise

in practically realizing the potential benefits of universal sketching

in the low-power regime. We present a proof-of-concept testbed

evaluation of Joltik in LoRaWAN NUCLEO-L476RG boards and

sensors. Across a range of realistic datasets, Joltik provides up to

a 24.6× reduction in energy cost compared to transmitting raw

data and outperforms many natural alternatives (e.g., sub-sampling,

custom sketches, compressed sensing, and lossy compression) in

terms of energy-accuracy trade-offs.

CCS Concepts
•Networks→Network components; •Computer systems or-
ganization→ Embedded and cyber-physical systems; •Hard-
ware→ Communication hardware, interfaces and storage.
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1 Introduction
Low-Power Wide-Area Networks (LP-WANs) that span a large city

or rural area, are increasingly deployed to sense various metrics of

interest and send aggregate reports [39, 56]. These networks operate

over an extended range (miles) on stringent battery constraints (e.g.,

ten-year battery life).

Even though modern sensing chips can energy-efficiently sense

the environment at high sampling rates, storage, and communica-

tion constraints restrict these devices to communicate occasional

point samples or short summary statistics (e.g., a mean value). More

importantly, the exact list of statistics needed must be agreed upon

a priori, as the raw data is too large to be stored or transmitted

using the sensing devices.

Yet, this requirement of choosing the required statistics upfront

is problematic, as we show in the following motivating scenario. As

a solar farm, one may deploy multiple solar sensors which periodi-

cally send the amount of energy generated every fewminutes. After

deployment, however, new regulations or workload demands may

require the operator to detect new types of anomalies or outages

(e.g., weather events that might lead to blackouts) that require new

kinds of statistical estimates over the raw data.

Unfortunately, today we do not have good methods to efficiently

and accurately compute a broad spectrum of such summary statis-

tics. If the sensors cannot be reprogrammed in the field, the opera-

tors need to commit to a small set of metrics with corresponding

per-metric estimation algorithms at design time and cannot support

future requirements. Even if the sensors are re-programmable in

the field, at any given time we may only be able to enable a small

subset of algorithms due to computation and energy constraints,

resulting in blind spots for metrics that are currently disabled.

Ideally, we want a solution that enables downstream sensor data

analytics that: (1) are general to support many applications with a

single algorithm in contrast to using many per-metric algorithms,

and future-proof to support possibly unforeseen metrics for the

same data; (2) have high fidelity (e.g., at most 5% error [45]); and (3)

https://doi.org/10.1145/3372224.3419204
https://doi.org/10.1145/3372224.3419204
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Figure 1: Joltik leverages universal sketches to generate
future-proof general analytics for LP-WANs

do not sacrifice client energy-efficiency (i.e., supporting multi-year

deployments on a single battery charge). At first glance, these goals

seem challenging to achieve simultaneously — barring sending raw

data (which is energy inefficient due to the communication costs),

it seems difficult to support a large spectrum of data analytics tasks

on sensor data, let alone unforeseen requirements.

This paper presents Joltik, a framework that enables general and
energy-efficient analytics for low powerwireless sensors. Joltik oper-
ates under the power constraints of a low power sensor, computing

aggregates over significantly more sensed samples (better accuracy),

yet compressing them within a single packet transmission using

universal sketching (generality). Further, Joltik can compute a wide

range of unforeseen metrics without additional energy overhead at

the sensor (energy-efficiency). Joltik can enable all these benefits

on off-the-shelf clients with a simple software update.

Joltik builds on recent theoretical advances in universal sketch-
ing [10, 12–14]. At a high-level, sketching, or streaming algorithms

estimate (approximately) specific properties of a data stream, with

provable memory-accuracy trade-offs [4, 16, 19, 47, 51]. Unlike

previous sketches that support a narrow metric of interest (e.g.,

heavy hitters [16, 19, 51], quantiles [1]), universal sketches can

simultaneously support many already known and possibly unfore-

seen estimation tasks in a single algorithm [12, 45]. With universal

sketching, we only require to collect a general sketch summary

from the data at runtime and query any supported (and possibly un-

foreseen) statistics from the sketch anytime afterward (see Sec. 2.3).

This makes universal sketching the perfect candidate for enabling

general “future-proof” sensor data analytics.

Realizing these potential benefits of universal sketching on low-

power sensor platforms, however, raises significant practical chal-

lenges. Universal sketches need to perform a large number of hash

computations, store counter arrays for each layer, and communicate

these to base stations for computing the metrics. Yet, to achieve rea-

sonable fidelity requires space, computation, and communication

well beyond the capabilities of a typical low-power client.

Joltik’s key contribution is identifying and addressing these

practical system bottlenecks of applying universal sketching in

a low-power sensing context. Specifically, we identify the three

key bottlenecks as storage, power constraints, and computation

overheads. The rest of this paper addresses our three key design con-

tributions to tackle these challenges for enabling general accurate

analytics on power-starved sensors.
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Figure 2: Joltik provides better energy-accuracy trade-off
for “future-proof analytics” vs. prior approaches (feasible
regime defined as estimation accuracy > 95% for all metrics
of interest, and sensor battery lifetime > 5 years)
Efficient Storage (Sec. 4.1): These low-power devices have lim-

ited memory (hundreds of KBs) to store sketch data structures, and

as such native implementations of universal sketching are infea-

sible. Joltik designs optimizations to ensure that the sketch data

structure is compact (tens of KBs) for low-power sensors. Instead

of retaining the same number of counters per layer in the univer-

sal sketch, our approach carefully provisions a smaller number of

counters at lower layers, resulting in significant memory savings.

Reducing Communication Cost (Sec. 4.2): Despite the above

optimizations, the communication footprint is still too high espe-

cially in a lossy LP-WAN setting and consumes over 90% of battery

life for LP-WAN sensors [20]. We design a custom compression

scheme that relies on the natural structure of the sketch data struc-

ture – i.e. only a small fraction of counters in the sketch are large,

while the rest are small. Thus, we dynamically resize sketch coun-

ters prior to transmission to reduce communication costs.

Reducing Computation Cost (Sec. 4.3): Finally, as the client

sensing frequency increases, the computation footprint becomes

the major bottleneck as universal sketching entails computing nu-

merous hashes and counter updates on low-power devices. We

refactor the counter update computation in universal sketching to

effectively reduce the computation cost. Our approach is based on

an observation that the native universal sketch [45] unnecessarily

adds the same item into the sketch by multiple times. Thus, in order

to reduce computation while achieving similar accuracy, we can

eliminate these redundant counter updates and conduct only one

update per item.

Our end-to-end goal is to maximize sensor battery life while

achieving the desired level of system accuracy under clients’ com-

putation/memory constraints. Building on the above design opti-

mizations, we show how users can configure Joltik’s sketch pa-

rameters to suit application-specific accuracy requirements, while

accounting for the energy costs and resource constraints.

We implement Joltik using LoRaWAN NUCLEO-L476RG boards

and sensors, and conduct proof-of-concept experiments on a 10-

node LoRaWAN testbed spanning a university building. We further

emulate a variety of sensor deployment scenarios using publicly

available datasets ([15, 30, 66]) of temperature, pressure, soil mois-

ture, and solar energy measurement. We demonstrate Joltik’s per-
formance against a variety of baselines including sending raw data,
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Figure 3: Amotivating example: A solar farmmay need gen-
eral analytics for various applications

sub-sampling, compressed sensing, custom per-metric sketches,

and various lossy and lossless data compression strategies. Our

evaluation demonstrates that: (1) Given an energy budget, Joltik
achieves significantly better accuracy when compared to all base-

lines (see Fig. 2); (2) Joltik reduces storage requirements by 5×

compared to native universal sketches without loss in accuracy;

and (3) Joltik can measure multiple sensor statistics at the same

time without extra energy costs.

Contributions and Roadmap: In summary, this paper makes the

following contributions:

• A novel architecture for enabling general, energy-efficient, and

high fidelity sensor analytics by observing an opportunity to

leverage universal sketching (Sec. 3);

• A practical low CPU, low memory footprint and low power

realization of universal sketches on commodity sensor platforms

(Sec. 4);

• An end-to-end system realization of Joltik on a real-world Lo-

RaWAN testbed (Sec. 5) and demonstration of its benefits com-

pared to alternatives (Sec. 6).

2 Background and Motivation

2.1 Motivating scenario
Let us look at an example of a solar farm to motivate Joltik (Fig. 3).

Many companies are already moving towards low-power wireless

platforms for monitoring solar power production. These meters are

typically used to either send monthly energy generated [65] (i.e.,

total energy use) or detect day-night cycles, and therefore operate

solely on battery power to function, independent of the grid [38].

In this section, we motivate Joltik with a real-world scenario and

highlight the limitations of current approaches. We then briefly

discuss the theoretical foundations underlying Joltik’s abilities.

Solar Sensor Metric Definition
Energy Generated L1-norm (L1)

∑
fi

Power usage α-Heavy Hitters fi ≥ α
∑

fi
Voltage Volatility L2-Norm (L2)

∑
f 2i

Anomaly Detection Entropy −
∑ fi

L1 log
fi
L1

Weather Event Change fc ≥ α
∑

fc
Voltage Range Tail Detection Quantiles

Power Outages Zero-draw Time f0 ≥ α
∑

fi
Table 1: Metrics relevant to a solar farm

In addition, we may have other analytical tasks of interest, say

detection of an anomaly or volatility of the voltage generated. This

Approach Energy Accuracy Generality

Sub-sampling [26, 28] ✓ × ✓
Lossless Compression [40, 60] × ✓ ✓
Lossy Compression [27, 57] ✓ × ✓
Sparse Recovery [52] ✓ ✓ ×

Data-centric

✓ ✓ ×
Aggregation [53, 70]

Joltik ✓ ✓ ✓

Table 2: In contrast to prior work, Joltik guarantees energy-
efficiency, accuracy, and generality (See Sec. 7)

might be facilitated, for example, by calculating the entropy of the

drawn current. More generally, there may be multiple kinds of sta-

tistical summaries of interest computed over the raw sensor stream

for various analytical tasks. Table 1 shows a subset of possible (but

non-exhaustive) statistics for this application setting.

Today, it is challenging if not impossible to support such general

analytics. The operators have to decide at deployment time which

set of analytics tasks need to be supported. Since the low-power

clients cannot compute all possible set of statistics, we may not be

able to support a wide spectrum of downstream tasks.

Even if field re-programmability were feasible, the operators

still have to make some unfortunate runtime trade-offs. Since the

sensors only have finite computation, storage and power resources,

we may not be able to simultaneously run all possible services and

some of these tasks will suffer from fundamental “blind spots”.

Now, consider the scenario where a new type of analytical ca-

pability emerges, say to study the voltage range of malfunctioning

sensors, or investigate the effect of weather events. It is expensive

to physically visit and reconfigure the clients manually. While over-

the-air (OTA) updates [42] may address this partially for high-end

platforms, many clients cannot support this capability due to the

large power draw. Thus, this new capability will require essentially

a significant overhaul of the already deployed infrastructure.

The above case study demonstrates the need for an approach that

can provide accurate, general, and possibly future-proof analytics

for a wide array of metrics without constant manual intervention.

2.2 Strawman Solutions
In this context, we explore a few strawman approaches (see Sec. 7

for a more detailed related work overview). We note that our ex-

perimental evaluation compares Joltik with each of the below alter-

native design choices to demonstrate significant improvements in

the accuracy vs. energy consumption trade-off (shown in Sec. 6).

Sub-Sampling [26, 28]: The company may circumvent com-

putation limitation by allowing the sensors to select some k appli-

cations out of the pool of all applications and then leverage spatial

and temporal correlation over the sparse samples to estimate all

metrics. Yet, this will still lead to lower fidelity and blind spots in

measuring these metrics. Further, this approach will need the pool

a priori, which is not conducive to unknown applications.

Lossless compression [40, 60]: Using lossless compression

on raw data is hard to achieve a significantly longer battery life

compared to transmitting raw data. The reason is that, compres-

sion ratio using lossless compression is typically low (e.g., 4.5× in

previous work [60]). Given that low power clients usually have a

limited storage capacity [73], when the client is operating at a high
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sampling rate, the client needs to transmit much more frequently,

resulting in high energy consumption. Even if the client operates

at a low sampling rate, the benefit of lossless compression over

transmitting raw data is limited due to the low compression ratios.

Lossy compression [27, 57]: If the client uses lossy compres-

sion, the battery life is extended as the client now transmits much

fewer data. However, there will be a large amount of information

loss sacrificing the data accuracy. For instance, quantization or

rounding can reduce the amount of data to be transmitted by lim-

iting the number of data bins or decimals. Yet, this approach will

affect data precision and increase estimation error of statistics re-

quiring a high data precision. Transform coding schemes such as

Discrete cosine transform (DCT) [2] are also potentially great can-

didates in ensuring increased client battery life but fail to guarantee

high fidelity as some high-frequency components can be discarded.

Sparse Recovery [52]: This class of approaches can operate

efficiently at clients (e.g., compressive sensing is linear) without

sacrificing accuracy like the above approaches. However, it makes

assumptions about the sparsity of the raw data which may not

be true. Further, this assumption can miss out on the tail of the

distribution which may affect its efficacy for many relevant metrics.

Sketching [4, 16, 19, 51]: Sketching algorithms (sketches) are

a class of approximation algorithms to estimate various statistics of

a given data streamwith small space and high fidelity. Summarizing

the sensed data with sketches can enable highly accurate estimates

for a specific metric of interest (e.g., count-min sketches [19] for

heavy hitters). Sketches typically rely on hash functions to identify

the frequency of various events. These hash functions are cus-

tomized to store only the necessary details to compute a function.

However, typical sketching algorithms not only require separate

algorithms to compute multiple statistics, which is memory- and

compute-heavy, but also fail to be future-proof as they cannot di-

rectly support other (possibly new) metrics of interest.

In summary, the above discussion suggests that an ideal ap-

proach should be general and future-proof by enabling high-fidelity

estimates of current and future relevant metrics without making

assumptions on data distributions. In this regard, recent advances

in universal sketching [11, 12] appear promising. Most importantly,

universal sketching can estimate a wide spectrum of statistics under

arbitrary data distributions without the need to specify the metrics

of interest beforehand, leaving room for future analytical tasks.

2.3 Background on Universal Sketching
Conceptually, a universal sketch maintains a unified sketch struc-

ture that can enable estimation for every function drawn from a

broad class of functions instead of keeping one individual sketch per

estimation task. More specifically, this class of estimation tasks can

be represented in the following form: G-sum=

∑
д(fi ), where fi is

the frequency of the i
th

unique element. Fortunately, many natural

statistical summarizations of interest fall within this family as seen

in Table 1. For instance, we evaluate several real-world datasets in

Sec. 6 that need to estimate G-sum. In the Indoor Solar dataset [66]

containing continuous output voltages of a solar panel, we can

compute the L2-norm of the voltages to quantify the panel quality

or estimate the entropy to detect anomaly events. In the LoRa Farm

dataset [15] from a soil moisture sensor, we can estimate the change

of the moisture values to detect environmental changes. The theory

results show that if д is monotonic increasing and upper bounded

by O(f 2i ), then a single universal sketch can compute these G-sum

functions. (A detailed analysis is out of the scope of this paper, and

we refer our readers to relevant references [11, 12, 14, 45].)

However, a conceptual understanding of the computation/memory

structure of sketch data structures is relevant for us in order to use

it in the Joltik context. At a high-level, universal sketching lever-

ages basic L2 heavy hitter algorithms (e.g., count sketch [16]) as

building blocks
1
. As a basic L2 sketch, a count sketch maintains

several arrays of counters (e.g., a matrix of counters with r rows
and d columns) with independent hash functions; For each data

item, it will update a randomly located counter in every row based

on the corresponding hash index and use a heap to store current

top-k heavy hitters. Thus, a universal sketch composes multiple

layers of count sketch instances simultaneously. Each count sketch

applies independent hash function hj (returns 0 or 1) to the input

data stream to subsample at every layer (from the previous layer).

This enables them to give equal weightage to both the most fre-

quent as well as the tail of the histogram distribution. These layers

then track the heavy hitters to identify the key contributors to the

G-sum functions. As depicted in Fig. 4a, the intuition here is that the

layered structure of universal sketch is designed for sampling repre-

sentative elements with diverse frequencies and these elements can

be used to estimate G-sum with bounded errors. If only one layer

of heavy hitter sketch is used, we can only find frequent elements,

lacking representatives from less frequent elements.

During the offline phase, we use the heavy-hitters at each layer

and process the sketch iteratively from the bottom layer to the top.

The recursively aggregated result from bottom to top can then be

used to compute the desired statistic. Prior work has shown that

this aggregation can be performed as an unbiased estimator of G-

sum [45, 64] with bounded additive errors. This enables universal

sketches to provide general analytics for all G-sum functions at the

base station without knowing them a priori.
Revisiting our solar farm scenario, this can be a good fit for the

applications as shown in Table 1. The low-power sensor computes

a universal sketch over sensed samples and reports it to the base

station, significantly reducing the amount of data to be transmitted.

The base station can then compute the metrics of interest (e.g.,

energy generated) using the reconstruction algorithm.

While this is a promising starting point, there are practical chal-

lenges that arise due to the storage and energy (i.e., from compu-

tation and communication) constraints in a LP-WAN context. Our

contribution is to identify and address them as we discuss next.

3 Joltik – Overview
Joltik is a sensor analytics framework that simultaneously achieves

generality to support a large range of metrics of interest, fidelity
in estimating these diverse statistics, and energy-efficiency for opti-

mized client battery life.

Joltik Workflow: Joltik operates as follows:

(1) Configuration: A Joltik client is configured once during its op-

eration to configure the behavior of the sketch during its lifetime.

1
Preciously, L2-heavy hitters are defined as items whose frequencies are larger than

some α fraction of L2 for 0<α<1, where L2 =
√∑

f 2i .
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(a) Native universal sketch (e.g., [45]) (b) Joltik

Figure 4: Joltik addresses the three key bottlenecks (compute, storage and communication) in prior universal sketching imple-
mentations to enable accurate general analytics for low-power clients

This decision is taken based on the battery life and accuracy re-

quirements for a particular client. Based on the energy profile of

the client, Joltik is configured to perform under a budget of total

energy E and available memoryM . This allows Joltik to provide

an ϵL2-additive error guarantee (which means the difference

between the measurement and the ground truth is bounded by

ϵL2) for all supported metric estimations based on the sketch

size (see Sec. 4.1 for details).

(2) Sensing and Computing: Every collected data sample from

the sensor will be fed into the universal sketch on board using the

embedded micro-controller. Instead of storing the raw samples,

Joltik keeps a universal sketch for each measurement interval.

(3) Communication to the base station: Joltik devices send the

compressed form of the computed sketch over the wireless

medium periodically, e.g., once per hour or day. The base station

uses the sketch to estimate metrics for downstream analytics.

Joltik – System Challenges: To achieve the benefits of universal

sketching in practice for low-power clients, Joltik addresses the

following challenges as depicted in Fig. 4:

Achievinghighfidelitywith smallmemory footprint:A canon-

ical universal sketch [45] requires several hundreds of KBs or even

a few MBs to obtain highly accurate results. However, low-power

clients have an embedded MCU with limited on-chip memory (e.g.,

NUCLEO-L476RG LoRaWAN board has 128KB SRAM). Given this

tight memory budget, we need a compact universal sketch but still

provide high accuracy. We describe our approach to reduce the

memory footprint in Sec. 4.1.

Optimizing communication with the base station: Wireless

communication is the first-order energy consumer in wireless sen-

sor platforms. By transmitting the sketch data structure instead of

raw data, we reduce the communication cost to some extent. Yet,

every bit matters for low-power wireless transmission. In Sec. 4.2,

we present our approach to dynamically reduce sketch counter

sizes without affecting the accuracy of metrics for estimation.

Reducing energy footprint of sketchupdate: Low-powerMCUs

have limited computation resources (e.g., Cortex-M3 CPU with

32MHz). Universal sketching implemented as-is requires multiple

hash computations (e.g., 5-10 independent hashes) for each collected

sample, inducing computation overhead and additional energy con-

sumption. In Sec. 4.3, we identify a simple-yet-effective opportunity

to halve the computation requirement without affecting accuracy.

Tunable configuration to meet specific needs: Joltik’s data
structure can be configured to meet application-specific goals in

terms of energy and accuracy trade-off. In Sec. 4.4, we derive the

relationship of Joltik’s parameters vs. energy as well as accuracy,

and show how these configurations can be automatically derived

demonstrating Joltik’s flexibility.

4 Detailed Design
In this section, we discuss our contributions in reducing the overall

energy footprint and making universal sketches feasible on low-

power sensor platforms, as shown in Fig. 4b. We also discuss how

a sensor deployment can practically configure Joltik system param-

eters to get suitable accuracy-lifetime trade-offs.

4.1 Reducing Memory Footprint
Problem: Recall that the universal sketching algorithm maintains

multiple “L2 heavy hitter” instances for subsampled streams, and

each instance needs a separate heap data structure to record the

top heavy hitters for that particular substream. Prior work Uni-

vMon [45] presents a canonical realization of this approach by

implementing several equal-sized count sketch [16] components.

If we leverage this native universal sketching implementation di-

rectly and try to reduce the memory size, we would need to reduce

the memory footprint of each count sketch uniformly. For instance,

if UnivMon allocates 600 KB memory for a 12-layer sketch to es-

timate thousands of distinct elements, each count sketch instance

uses 50 KB memory. Reducing the total size to 60 KB for sensor

deployment would mean that each count sketch gets only 5 KB,

causing 10×more hash collisions and significantly larger errors. As

shown in Fig. 11 in Sec. 6, we see greater than 30% errors.

Strawman solutions: Given that the naïve memory reduction

on UnivMon causes significant errors, we can consider several

other possible memory reduction methods: First, we can try to

reduce the number of layers instead of smaller sketches per layer.

However, the structure of universal sketch withO(logn) layers (for
n unique elements) is key to maintain its generality and fidelity for

supported statistics. Reducing the number of layers will affect the

algorithm’s capabilities to detect less frequent elements and, in turn,

the accuracy. A second approach could be to reduce the number
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of rows of hash functions in each sketch. However, reducing the

number of rows will affect the confidence interval of obtaining

accurate results, reducing the quality of results, and leading to

irrelevant failed results frequently (e.g., 1 failure out of 5 trials).

Our approach: The main insight here is that the upper layers con-

tribute significantly more to any G-sum function than the lower

layers. In a sensor deployment, we argue that we can enable high

fidelity estimates by reducing the size of lower layer sketches for

two reasons: (1) The lower layer sketches are responsible for iden-

tifying the sizes of small “heavy hitters” (i.e., elements appear less

frequently in the whole data but are relatively frequent in that par-

ticular layer) from lower-layer substreams. The errors from those

infrequent elements have a smaller influence on the final statistic

than the more frequent elements. (2) The lower layers need to han-

dle a much smaller number of samples. Since the actual errors in

estimating the heavy hitters are proportional to data samples, re-

ducing the sizes of lower-layer sketches will not yield significantly

higher errors than upper layers.

With this insight, wemaintain larger (i.e., higher fidelity) sketches

for upper layers and smaller sketches for lower layers, as an “in-

verted pyramid” structure. We gradually reduce the number of

columns in each sketch as we move to lower layers. Optimally tun-

ing the relative sizes of each layer will be workload dependent. In

practice, we choose this reduction to a geometrically smaller num-

ber of columns at each layer. Our empirical evaluation in Sec. 6 of

the above demonstrates that a ratio of 1/2 provides a good energy-

accuracy trade-off. Thus, every layer is allocated 1/2 the number of

columns as the previous layer.

Impact on accuracy: To understand why our inverted pyramid

memory allocation can preserve high accuracy in practice while

significantly reducing the memory size, we analyze this strategy

based on the accuracy bound of the Count Sketch [16] stated in

Theorem 4.1 below:

Theorem 4.1 ([16]). For 0 < δ , ϵ > 1, let fi be the actual frequency
and ˜fi be the estimated frequency of element i in the dataset. The
Count Sketch algorithm estimates ˜fi = fi ± ϵL2 using O(log 1

δ · 1

ϵ 2 )

space with 1-δ probability, where L2 is the L2 norm of the vector with
all element frequencies.

Given Theorem 4.1, the count sketch instances in the universal

sketches are able to maintain ϵL2-additive errors for any workload

distribution. In our approach, we allocate less space for the lower

layer count sketches, leading to increased ϵ values in these layers

based on Theorem 4.1. For instance, if we decrease the sketch size

by 2×, then the ϵ error will increase by O(
√
2). However, this addi-

tive error bound increase will not convert to a larger error as the

actual errors depend on both ϵ and the actual L2 norm. Intuitively,

even though ϵ value increases as memory reduces, this increase is

mitigated by a simultaneous reduction in the value of the L2 norm
that is multiplied with ϵ in the overall error bound in Theorem 4.1.

Indeed, L2 value always decreases in lower layers because the sub-

sampling between sketch layers will reduce the data size and “filter

out” large heavy hitters in the lower layers with high probability.

Thus, allocating more space for estimating large heavy hitters in

the upper layers is a wise choice. Across all of our tested sensor

datasets, we confirm the observation that L2 norm’s decreasing

rate is significantly higher than ϵ ’s increasing rate, resulting in the

minimal overall impact on accuracy.

4.2 Reducing Communication Footprint
Energy is a key constraint in wireless sensor deployment, and typi-

cally the communication component dominates the energy costs.

For instance, on our experimentation platform with a NUCLEO-

L476RG as MCU and SX1276 LoRa Transceiver as radio transceiver,

our measurements show that 4.56 million computation cycles can

be performed for the same energy usage as transmitting a single

byte. Thus, to extend sensor lifetime given limited battery resources,

we need to minimize the amount of data we need to transmit as

much as possible.

We do note that by using sketching and the memory optimiza-

tions above, we already achieve a significant reduction in commu-

nication costs vs. sending raw data. Suppose a sensor operates at

a sampling rate of 10 Hz, transmitting all raw data would result

in 3.5 MB data to be communicated every day. Using even an un-

optimized universal sketch requires only 300 KB per day; a 12×

reduction in energy consumption. Furthermore, our memory opti-

mization (Sec. 4.1) provides a further 5× reduction by using only a

60 KB data structure. That said, even with these techniques in place,

we want to explore opportunities to further reduce the amount of

data to be transmitted due to the large asymmetry in the energy

cost of computation vs. communication.

Recall that each layer of a sketch structure consists of two parts:

a count sketch and a heavy hitter heap. Next, we describe how we

can effectively reduce the communication footprint of transmitting

these two data structures from the sensor to the base station.

Lossless encoding of sketch structure: When transmitting a

sketch structure, it is important to use only lossless compression

techniques, as the base station would need the exact sketch informa-

tion from the sensor to calculate the application metrics accurately.

Joltik’s compression of count sketches derives from a simple yet

important observation that, in a certain count sketch, only a small

portion of counters tend to have large values, as shown in Fig 5a.

This indicates that one can compress a sketch by assigning different

bit sizes to each counter.

Specifically, Joltik assigns two extra bits to indicate 4 levels of

counter lengths, namely 4, 8, 12, and 16, and uses the correspond-

ing number of bits to represent a certain counter. For example, 112

needs more than 4 bits, thus will be represented as 0101110000 (10

bits), where the first two bits indicate that counter length is 8-bit.

Inevitably, for counter values which need more than 12 bits, this

method incurs extra costs. However, it is very unlikely for a count

sketch to have a large number of such values, as this indicates that

the count sketch is already near-saturated and would result in very

low accuracy. While Joltik’s compression scheme appears very sim-

ple, we show in Sec. 6 that it outperforms several common lossless

compression schemes. We also note that under Joltik’s compression

scheme, compressing a single counter requires only about 1/105

energy of transmitting it, which makes this a worthwhile trade-off.

Efficiently transmitting heavy-hitter heap data:As in original
universal sketching algorithms, Joltik also maintains a heap in each

layer, structured with key-value pairs, to track the top heavy hitters.

It is sufficient to reconstruct a heap without heap values, as long
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(a) Percentage of counters with different required bit sizes: we test
30 runs on each of the four datasets with a sampling rate of 10 Hz,
a data collection time of one day, and a sketch structure of 60 KB.

(b) Joltik uses two bits to indicate counter length and represents
each counter with corresponding number of bits.

Figure 5: Joltik’s compression scheme

as the corresponding count sketch and heap keys are successfully

recovered since the heap values are just estimates yielded by the

count sketch. Thus, Joltik only transmits heap keys when sending

data, and leaves the task of reconstructing a complete heap to base

stations. This discarding process does no harm to our sketching

algorithm and will not influence its accuracy.

Impact on accuracy: By construction, both of these optimizations

are lossless. Thus, by design, they have no impact on the accuracy

of the sketch-based estimates.

Discussion on robustness and bit-settings: Our compression

algorithm may theoretically end up transmitting more bits than the

original sketch if a majority of sketch counters take more than 12

bits to store. However, empirically such scenarios are very rare in

all datasets we use.

In addition, if some counter values take more than 16 bits, the

compression scheme may fail. Suppose we are using a sensor with

1 Hz sampling frequency (a total sample number of 86,400 per day)

and we transmit sketch summaries daily. In this case, a counter

value exceeding 16 bits means that more than 65,536 out of 86,400

sensor readings are exactly the same, a situation that is extremely

unlikely in real-world datasets. However, in case that this happens,

in our compression scheme, we scan through all the counters before

transmission. We can set the four levels of counter length based on

the current counter property to maximize the compression perfor-

mance and avoid failure (e.g., 4, 8, 12, and 16 bits, or 4, 8, 12, and

20 bits). Further, we can reduce the sampling frequency to 0.1 Hz

(leading to a maximum counter value of 8640) or transmit every 2

hours (leading to a maximum counter value of 7200).

As our compression on the sketch summaries to be transmitted

is lossless, different bit-settings in the compression scheme have

no impact on data fidelity. The less extra bits we add, the longer

the sensor battery life will be, which is why we set four levels of

counter length differently to maximize compression performance.

4.3 Reducing Computation Overhead

In addition to reducing the memory and communication footprints,

Joltik designs a new updating strategy for universal sketching to

reduce computation overhead in micro-controllers.

Problem: The universal sketch algorithm processes each element

using a series of operations, such as hash computations, arithmetic

calculations, counter updates, and heap updates. These compu-

tations incur high CPU overhead on the sensor data processing

and bring extra energy cost and large processing latency. A recent

study [43] demonstrates that the top two CPU performance bot-

tlenecks in the universal sketch are (a) hash computations and (b)

counter updates. Thus, the key for computation reduction is to

reduce the number of hash computations and counter updates.

Our approach: To further optimize the energy and reduce pro-

cessing delay, we introduce a new counter updating strategy that

can accelerate the computation by 2× without decreasing the final

accuracy. At a high-level, our approach (as shown in Fig. 6) is to

perform only a subset of updates to the layered Count Sketch in-

stances and we analyze that the reduced updates will not affect the

final accuracy.

Specifically, we change the updating strategy in the following

two aspects: (1) In prior universal sketch implementations [45]

(Fig. 6a), one must update the top several layers if an element has

been sub-sampled in consecutive Layers 1 to i since the hashes

on these layers all return 1. In this case, in total, i layers of Count
Sketches have been updated. Instead, Joltik chooses to only update

the lowest sampled layer for every element. For example in Fig. 6b,

we will only update Layer i . (2) When reporting the heavy hitters

from all layers, we will use the heavy hitters captured in the lower

layers to update all its upper layers. For instance, if heavy hitters

a,b have been reported on Layer i , we will use a,b’s results to
update Layers i − 1 to 1 as if a,b were tracked in these upper layers.

Likewise, we repeat this step for all the heavy hitter reported in

other upper layers.

Intuitively, if all sketching layers are allocatedwith equal amounts

of memory, tracking elements on their last layers provides similar

(or better) accuracy as moving elements from dense upper layers

to sparse lower layers yields the same (or smaller) actual errors

for these elements. However, this technique seems contradictory

to the idea of allocating less space for lower layers as described

in Sec. 4.1. As we will show later in the section, combining this

technique with the memory reduction technique does not affect the

actual accuracy given the robustness of the subsampling approach

and the natural skewness of the data.

Computational benefits: Recall that the probability that a certain
element is preserved from layer i to layer i+1 is 1

2
(as a hash returns

0 or 1), we can prove that the universal sketch updates two layers of

sketches on average for each element. Denote one hash computation

as H and one counter update as C , and assume each count sketch

instance has 5 rows of counters. Thus, in [45], the per-element

computation is 21H + 10C as 1 hash is needed for deciding which

layers to update, 20 hashes and 10 counter updates are required

to operate two Count Sketch instances. Compared with [45], our

approach only needs 11H + 5C computation as we only update one

sketch at a time, reducing the cost by approximately 2×.
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Figure 6: (a) Original update (update count sketch and heap
in each layer) vs. (b) Optimized update (only update the
count sketch in the last possible layer, then update the heap
in the last layer and all previous layers). In this figure, “✓”
means updating, “×” means not updating.

Impact on accuracy:Viewed in isolation, the above approach does
not result in any accuracy loss, as only updating the last layer will

provide the same accuracy guarantee for every item. That said, we

do acknowledge that combining it with the memory reduction (as

shown in Sec. 4.1) can result in worst-case errors since the counter

fidelity at lower layers is lower. In practice, however, the actual

added errors are negligible due to two reasons: (1) Based on the

subsampling probability, very few heavy hitters will be preserved

in bottom layers. (2) Even if a heavy hitter is indeed selected to

update a very bottom layer, the error will still be reasonable as

our approach further reduces the L2 norm of the data processed

through that layer (see Sec. 4.1).

4.4 End-to-end Deployment
In this section, we describe how Joltik’s optimizations on computa-

tion, communication, and storage are integrated to achieve end-to-

end improvements in the energy vs. accuracy trade-off. Specifically,

we show how both total energy and system accuracy can be deter-

mined from Joltik’s sketch structure size, so that it can be tuned to

meet application-specific requirements.

Consider the perspective of sensor network operators who want

to benefit from deploying Joltik. The user provides as input pa-

rameters that describe their sensor network deployment, following

which Joltik suggests a menu of candidate configurations that trade

off battery life and accuracy. The users can then choose a configura-

tion that they think best suitable for their application. Specifically,

Joltik needs the following parameters from the user: (1). Data collec-

tion rate Rcl : it describes how frequently individual sensors should

collect data; (2). Period of transmissionT : it decides how frequently

Joltik client should transmit.

Joltik then tunes its sketch size Ss (in Bytes) to identify suitable

configuration options that trade off between client battery life and

estimation accuracy. We measure battery life across these instances

by assuming a total energy budget of Eb , which is determined by

the sensor’s battery capacity.
2

Lifetime Estimation:We show how lifetime can be represented

based on the above three variables (namely Rcl , T , and Ss ). Specifi-
cally, we first compute the energy consumption per day Eday , and
then calculate an expected lifetime.

2
Note we express energy consumption, including Eb , with the unit of mA*s in our

analysis, since we use a fixed voltage of 3ßV across all operations.

For a low-power client, its battery is usually modeled based on its

processing cost and its transmission cost, as in [20]. Based on this

battery model, we note that Eday consists of four main energy costs

(all on a per-day scale), all of which depend on input and sketch

parameters [20]: (1) The processing cost per sample (proportional

to Rcl , the number of samples per day); (2) The compression cost

(proportional to Ss/T ); (3) The sleep cost (decreases linearly with

Rc1); (4) The transmission cost (proportional to Ss )
Following a similar analysis in [20], we can define Eday as a

function f (.) of Rcl , Ss and T :

Eday = f (Rcl , Ss ,T )

Thus, an expected lifetime can be estimated as:

Lifetime = Eb/Eday = Eb/f (Rcl , Ss ,T )

Error Bound: Following the analysis in [12] and [16], we know

that universal sketch requires space that isO(logn · log(1/δ ) · 1/ϵ2)
to process n unique elements, where ϵ is the additive error in L2
norm of the frequency vector, and it further influences accuracy.

Specifically, that means Ss should be proportional to 1/ϵ2.

Energy and Accuracy Trade-off: Using the above methodology,

Ss links lifetime and error bound together with its different impacts:

for lifetime, coarsely we have Lifetime ∝ 1/(kSs +b), where k and b
are constants; while for accuracy, coarsely we have Error ∝ 1/

√
Ss .

This gives two important takeaways for a potential user: (a). When

it is necessary to transmit frequently (hence T is small) due to ap-

plication requirements, one can potentially use less memory with

an acceptably small loss of accuracy, but beyond a certain point

the accuracy will be significantly reduced due to smaller mem-

ory; (b) When a larger transmission period is acceptable, one can

transmit less frequently and apply larger sketch structure to push

towards a smaller ϵ , hence improving accuracy while maintaining

a reasonable lifetime.

In practice, we envision suggesting several candidate configura-

tions so that users can flexibly explore a suitable trade-off between

lifetime and accuracy. Table 3 shows several sample configurations

to illustrate this energy and accuracy trade-off. Here, Eb is taken

to be a typical value of 3000 ∗ 3600 mA*s (i.e., 3000 mAh) based on

an AA battery, and we use a public Indoor Solar dataset [66] for

evaluation (See Sec. 6 for more details).

Let’s say the user has a specific requirement of collecting and

sending data frequently (e.g., 10 Hz and once per day), Joltik would

suggest several candidate structure sizes, and provide correspond-

ing estimate of their battery life and accuracy. Table 3 shows three

such possible selections, namely 30 KB, 60 KB, and 90 KB. It is im-

portant to note that the user can get a significantly longer battery

life while maintaining accuracy, if Rcl and T are set to 5 Hz and 2

days, respectively. However, this comes at the cost of latency of re-

porting. Thus, Joltik empowers the user to configure the parameters

by proposing several candidates that best suit their needs.

5 Implementation
We implement Joltik in C using Mbed [50] compiler at both client

and the base station. The code for implementing Joltik and the

dataset collected on campus is available at [48]. We use commodity

off-the-shelf sensors and RF boards to sense at the clients and

communicate to the base station.
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Requirements Candidate Configurations
Rcl T Ss Lifetime Accuracy

30 KB 2751 days 94.30% ± 3.27%

10 Hz 1 day 60 KB 1613 days 96.61% ± 2.25%

90 KB 1141 days 97.50% ± 1.92%

30 KB 5468 days 94.28% ± 3.47%

5 Hz 2 days 60 KB 3215 days 96.50% ± 2.17%

90 KB 2276 days 98.15% ± 2.08%

Table 3: Joltik deployment example

Figure 7: Hardware Components of Joltik: (a) Microcon-
troller (NUCLEO-L476RG); (b) Sensor Board (X-NUCLEO-
IKS01A2); (c) Transceiver (SX1276 Long Range Transceiver).

Figure 8: Sensor locations in the building

Sensor Node. The Joltik sensor node consists of three parts —

sensor board, micro-controller (MCU), and transceiver:

• Sensor Board:We use the X-NUCLEO-IKS01A2 (Fig. 7b), a motion

MEMS and environmental sensor expansion board for the STM32

Nucleo. This board integrates the motion MEMS accelerometer,

gyroscope, magnetometer, and environmental sensors for hu-

midity, temperature, and pressure on one board.

• MCU: We use the NUCLEO-L476RG board (Fig. 7a) , which con-

tains a STM32L476RGT6U MCU in the LQFP64 package. This

MCU runs Joltik to generate sketch summaries and assembles

LoRaWAN packets.

• RF Frontend: We use the SX1276 LoRa Transceiver (Fig. 7c) to

communicate with the base station. In our experiments, we set

this transceiver to operate at 915MHz, SF 10, and 125 KHz band-

width.

Base Station. Joltik base station consists of two parts — the MCU

and the LoRa RF transceiver:

• MCU: We use the same MCU board as the client. This MCU

receives LoRa packets from sensor nodes. Application metrics

could either be calculated at this MCU (case 1), or the cloud

(case 2). In case 1, the MCU rebuilds sketch summaries, and

run universal sketching offline algorithm to generate results

on application metrics. In case 2, the MCU is connected to a

computer or network and uses serial communication to transmit

all received LoRa packets to the cloud. In our experiments as

described in Sec. 6, we use the MCU to directly calculate the

application metrics (case 1).

• RF Frontend: We use the same RF board as the client for LoRa

communication. Traditionally a base station is equipped with

much larger bandwidth to receive multiple packets simultane-

ously. However, we overcome this problem by requiring our

clients to transmit across fixed time-slots enabling isolation.

6 Evaluation

In this section, we first evaluate Joltik on a proof-of-concept de-

ployment in a campus building with ten pressure sensors and one

base station (as shown in Fig. 8). We also study the performance

of Joltik by emulating three varieties of sensor deployments with

three other large real-world datasets. Across these sensor datasets,

we compare Joltik with other alternatives, and the results are shown
in Sec. 6.1. Then, we compare the performance of Joltik with the

native universal sketching algorithm, and the results are shown in

Sec. 6.2.

Note that when configuring Joltik, we follow the guidelines in

Sec. 4.4 and balance the energy and accuracy trade-off. In addition,

when comparing with other schemes such as compressed sensing

or custom per-metric sketches, we use the same energy budget.

Our major findings are as follows:

• Joltik achieves significantly better accuracy (97.9%) compared to

sub-sampling (60.1%), native universal sketching (82.3%), com-

pressed sensing (34.9%), and discrete cosine transform (57.8%)

using the same amount of 60 KB memory across datasets and

across evaluation tasks.

• Joltik achieves a longer sensor lifetime (5.6 years), compared to

canonical lossless compression (0.3 years) and lossy compression

(0.85 years) given similar accuracy requirements.

• Joltik reduces 96% of the sensor power consumption compared to

transmitting raw data while maintaining high accuracy (> 95%)

on the tested tasks.

• Joltik supports a range of analytical tasks without extra power

consumption on the sensor nodes.

Datasets: In addition to our own dataset, we also consider three

real-world datasets from previous work: (1) Indoor Solar [66]: 2
years of joint high accuracy power and ambient condition traces

at 6 diverse indoor locations for energy harvesting systems. (2)

SensorScope [30]: Environmental data from past SensorScope de-

ployments [63]. In our experiments, we use the global current value

to test system performance. (3) LoRa Farm [15]: Soil moisture and

temperature measurements from an underground sensor network

on a farm site in Western Australia. In our experiments, we use the

water content value to test system performance.

Metrics: To evaluate energy-accuracy trade-off of Joltik and the

alternatives, we choose 4 analytical tasks as motivated by our solar

farm example: Heavy Hitter (HH), Cardinality, Entropy Estimation

(Entropy), and L2-norm (L2). For HH, we detect the top 100 most

frequent values in a day and estimate the median relative errors of

their frequency. We report the relative error = s−sr eal
sr eal

, where sr eal
is the ground truth of a task and s is the measured value.
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(a) Indoor Solar dataset
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(b) LoRa Farm dataset

Figure 9: Joltik Accuracy-Energy Trade-off: Joltik provides better battery lifes while providing better accuracy.

Battery life estimation: To estimate the power consumption of

Joltik and other baselines, we leverage prior current models of

our board [20]. The power model is based on the actual current

measurements from the Semtech SX1276 board which we use for

evaluation. This model estimates the required current for the com-

putation, communication, reception, and sleeping modes of the

RF board. Using these current and time numbers, we report the

device’s total power consumption (including sampling, processing,

and transmitting) for one day. We then leverage these to estimate

the battery life of the client by using a standard AA battery as the

energy source (typical for an LP-WAN client).

Baselines: We compare Joltikwithmultiple baselines. Note that an

exhaustive comparison to all lossy compression techniques is out of

the scope of this paper. Here, we consider two commonly used lossy

compression techniques – canonical lossy compression and trans-

form coding lossy compression. Below are detailed descriptions of

all baselines:

(a). Tx Raw – transmitting all raw data.

(b). Sub-sampling – downsampling raw data with a defined ratio

and transmitting sub-sampled data.

(c). Lossless Compression – we use Huffman coding [33].

(d). Compressed Sensing – we use CoSaMP [52], a widely used

compressed sensing algorithm.

(e). Canonical Lossy Compression (marked as “Quantization +

Compression” in Fig. 9) – we tested several compression techniques:

i). quantization (data binning) [27] followed by differential encod-

ing and entropy coding (Huffman coding) [33]; ii). rounding [59]

followed by differential encoding and entropy coding; iii). quanti-

zation followed by entropy coding. Technique i) performs the best

and is selected to represent lossy compression in Fig. 9.

(f). Transform Coding Lossy Compression3 – performing Discrete

Cosine Transform (DCT) [2] on raw data samples and using the

top K (in our experiments, K = 8, 000) coefficients to represent the

raw data.

(g). Custom Per-metric Sketches (marked as “Custom Sketch” in

Fig. 9) – specifically designed sketches for the above metrics; in

3
Given the complexity of DCT algorithm and limited computation capacity of our

sensor hardware, DCT result shown in Fig. 9 is extrapolated: We report accuracy result

by running DCT on real sensor datasets, and report estimated lifetime by calculating

sensing and communication energy cost. ⋆ in Fig. 9 denotes extrapolated result.

our experiments, we use Count-Min Sketch [19] for HH, Hyper-

loglog [22] for Cardinality, entropy estimation algorithm [17] for

Entropy, and Count Sketch [16] for L2-norm.

(h). Native Universal Sketching – the original version of universal

sketching [45].

6.1 End-to-end System Performance

We evaluate Joltik on the following performance metrics: accuracy,

device power consumption, andmulti-task handling (i.e., computing

multiple metrics simultaneously) using the same energy budget.

Energy-Accuracy Trade-off: We run experiments on all four

datasets 30 times (note that sampling across hash layers is proba-

bilistic) and report the median and the standard deviation of errors.

Note that we only report the experiment results using Indoor Solar
and LoRa Farm datasets in Fig. 9 due to limited space, but experi-

ments using the other two datasets have similar results, and Fig. 2

shows the results from all four datasets.

Result: As depicted in Fig. 9, Joltik achieves significantly better

accuracy in all tested tasks and datasets over sub-sampling, com-

pressed sensing, custom per-metric sketches, and lossy compres-

sion. We also notice that, for sub-sampling, as we increase the rate

from 10 to 100, sensors lose more and more information, leading

to higher error rates. This is particularly large for tasks that focus

on tail distributions such as cardinality. While CoSaMP works for

sparser datasets, the compressed sensing approach fails miserably

on dense data, achieving only about 30% accuracy. While one would

assume custom per-metric sketches to outperform Joltik in terms

of accuracy, remember that when we constrain the system to have

equal energy consumption, each custom sketch only gets
1

4
of the

total energy. Thus, Joltik outperforms the custom per-metric sketch

method. DCT also fails to guarantee high fidelity, as we are only

using the top 8,000 coefficients to represent the raw data, and the

information kept in high-frequency components is lost.

We also tested Joltik’s performance to canonical lossy compres-

sion baselines. Joltik outperforms all of them in relation to the

energy-accuracy trade-off. The problemwith quantization or round-

ing is that, when reducing the number of data bins or decimals, low

data precision will lead to a high error rate in statistics like HH (in

the worst case, no matched heavy hitters can be found, leading to

a 100% error rate). Also, the battery life improvement provided by
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Figure 10: Generality and Multi-task Handling. Left: Error
rate of Joltik estimating four application sets using the same
energy budget. Right: Error gap between Joltik and custom
per-metric sketches estimating four application sets using
the same energy budget. positive values imply Joltik is worse
and vice versa). Both experiments use Joltik dataset with 1
Hz sensor sampling rate.

these canonical lossy compression techniques compared to trans-

mitting raw data is limited (3.75× when keeping 100 k data bins

and 7.1× when keeping 1 k data bins). The reason is that, when

we perform quantization on the raw data samples, we are reducing

the number of bits needed for each sample, rather than reducing

the total number of samples. Suppose the sensor is sampling at

1 Hz, transmitting 86,400 32-bit data samples per day (a total of

345.6 KB). After quantization, we would transmit 86,400 16-bit data

samples per day (a total of 172.8 KB), leading to a 2× reduction

in the size of transmission data. Differential coding and entropy

coding further compress the data by another 3.5×, resulting in a

7× total improvement. On the other hand, Joltik, with its Ss set

as 60 KB, transmits only around 16 KB per day (our technique in

Sec. 4.2 provides a 3.84× compression ratio), hence it provides a

much longer battery life than these lossy compression techniques.

Joltik is also more energy-efficient over baseline approaches

of transmitting raw data (24.6×) and lossless compression (16.4×).

This is due to the fact that lossless compression can only compress

the raw data by 1.5×. This means that if the low power sensor

operates on a typical AA battery, these approaches would provide

an insufficient battery life of 80 days and 135 days, respectively.

In comparison, Joltik can allow the client to provide high fidelity

analytics for 5.6 years.

At first glance, sub-sampling, custom per-metric sketches, DCT,

and canonical lossy compression (with 1 k data bins) seem pretty

energy-efficient. However, we can see that they achieve so by sac-

rificing accuracy. Thus, it is necessary to understand how these

algorithms trade-off energy for accuracy. Fig. 9 demonstrates that

Joltik has a better energy consumption and accuracy trade-off over

these approaches across applications. This result highlights the

ability of Joltik to achieve energy-efficiency and high fidelity at the

same time.

Generality: To evaluate generality, we deploy both Joltik and

custom per-metric sketches to do four different sets of estimation

tasks: AppSet1 = {Cardinality}, AppSet2 = {Cardinality, Entropy},

AppSet3 = {Cardinality, Entropy, L2}, and AppSet4 = {Cardinality,

Entropy, L2, HH}. For all the estimation task sets, Joltik and custom

per-metric sketches operate under the same energy budget (5 years

of battery lifetime using a typical AA battery). For custom per-

metric sketches, when evaluating multi-task handling, we divide

the power budget uniformly across different custom sketches.

Result: Fig. 10 shows that runningmultiple tasks on Joltik using the
same energy budget does not incur accuracy deduction in individual

tasks, since the universal sketch maintained in the sensor preserves

information for all of these tasks. In various machine learning

and data analytics scenarios, which require a variety of features

from sensory data, Joltik can be an energy-efficient and accurate

alternative to the approach of simply sending all raw data. We

also show the “error gap” between Joltik and custom per-metric

sketches (Joltik error rate subtracted by custom per-metric sketch

error rate; i.e., a positive value implies Joltik is worse and vice

versa). As expected, when more tasks are needed, Joltik performs

significantly better than custom per-metric sketches in terms of

accuracy. This is due to the consequently decreasing power budget

for individual tasks.

6.2 Evaluating Joltik’s Optimizations

In this section, we compare the performance of Joltik in terms

of memory footprint, computation-efficiency, and communication

overhead vs. the original universal sketching algorithm. We will

show how Joltik solves the three system challenges and why Joltik
is feasible for low-power wireless sensors compared to the original

approach.

Memory Footprint: Weevaluate our approach described in Sec. 4.1

by deploying both Joltik and the original universal sketching algo-

rithm [45] to perform 2 analytical tasks (HH and L2-norm). We vary

the amount of memory for both approaches to study the impact on

accuracy.

Result: As depicted in Fig. 11, Joltik achieves low-error estimation

for both heavy hitters and L2-norm at significantly smaller sketch

sizes. A key thing to notice is that for memory sizes smaller than

100 KB (typical on a low-power client), only Joltik can provide high

accuracy for most supported tasks.

Communication Overhead: We evaluate Joltik’s approach for

reducing the communication overhead by comparing the power

consumption of Joltik’s scheme with lossless compression schemes

such as Huffman encoding, LZW, Delta Encoding, and native uni-

versal sketch.

Result: Our results in Table 4 demonstrate a 3.84× reduction in the

size of transmission data and a 3.76× reduction in power consump-

tion over the native universal sketching algorithm without losing

any information at the base station. It also performs comparably to

many of the prior encoding schemes in terms of compression ratio.

Computation Overhead: Finally, we evaluate the impact of Joltik’s
computation optimization of reducing the number of hashes per

element. Since our approach does not affect the accuracy of the

output metric, we focus on the reduction in power consumption as

a function of sensor sampling frequency. Fig. 12 shows increasing

benefits as sensors collect raw data more frequently, demonstrating

a 2× reduction in the sketch processing power. (At lower sampling

frequencies, transmission costs dominate.)
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Figure 11: Evaluation of memory optimization: Error rates of Joltik and the origi-
nal universal sketching on Joltik Dataset with 1 Hz sensor sampling rate (feasible
region is within 5% error rate and 100KB sensor memory limit).

Figure 12: Evaluation of computation op-
timizations: The percentage of sketch pro-
cessing power out of total sensor power.

Compression Compression Energy
Method Ratio (mAs)

Reducing bitsize

3.835 5479.7

per counter (Joltik)
Huffman 3.575 5868.4

LZW 3.57 5960.2

Delta Encoding 3.415 6136.8

No Compression

1 20616.1

(Native Universal Sketching)
Table 4: Comparing Sketch Compression Methods

7 Related Work

Low-Power IoT: There has been much work done in Low-Power

Wide-Area Networks (LP-WANs) for synchronization [3, 55], asso-

ciation [23, 41], optimizing power [5, 20], improving scalability [21,

24, 58], and client power adaptation [74]. Recent trends [31, 37]

demonstrate moving complex functions off the low-power client

to the more powerful base stations. LP-WAN clients typically can

communicate only a few KBs of data every communication cycle

with the above approaches increasing its throughput by 3 – 5×.

Within the same communication constraints, Joltik’s approach can

improve the accuracy of measured metrics from the same LP-WAN

client and can enable better quality estimates of a wide range of

statistics, potentially with a simple software update.

Aggregation in Sensor Networks: Retrieving information from a

large number of IoT clients or sensor nodes has been widely studied.

While some approaches, such as compressed sensing [8, 9, 29, 34,

52, 71], leverage the sparsity of information to retrieve the data,

other approaches use machine learning [61, 69] or statistical sam-

pling [28, 68] to retrieve information from a large number of sensors

in a network. There is also a rich literature on lossless compres-

sion [67], such as dictionary based [49, 60] and predictive coding

based [32, 40], with a caveat of providing relatively modest compres-

sion without affecting the accuracy of statistics. On the other hand,

lossy compression, such as quantization/rounding based [27, 57] or

transform coding (e.g., discrete cosine transform [2]) based, trades

some accuracy for further compression on data size. The last ap-

proach for aggregation [6, 7, 35, 53, 54, 62, 70] in wireless sensor

networks exploits the spatio-temporal correlations to minimize the

information required to calculate specialized metrics. In contrast,

LP-WAN technologies present a new challenge, as the communica-

tion is centralized instead of distributed, which means each client

communicates directly with the base station. This means we cannot

leverage hierarchy or spatio-temporal correlations to alleviate the

energy deficit by reducing the amount of data to be communicated.

Instead, as shown in Table 2, Joltik complements these solutions by

providing a generalized analytics framework that does not rely on

assumptions about the sensed data and can operate in a centralized

manner.

Sketching for Data Analytics: Sketching algorithms for aggre-

gate statistics have been explored in various contexts, including

stream data processing [4, 10, 18, 44, 51], database [16, 19, 25] and

network telemetry [36, 43, 45, 46, 72, 75]. Perhaps the closest related

work is UnivMon [45], which enables real-time general network

telemetry. While UnivMon has focused on adopting and optimiz-

ing universal sketches for high-power network switches, Joltik
instead optimizes for the battery life of the low-power client com-

municating with the base station. This presents new challenges in

each component (hashing, storage, and transmission) of universal

sketching, which Joltik alleviates to enable general, accurate, and

energy-efficient analytics for low-power clients.

8 Conclusion and Future Work
This paper presents Joltik, a framework for general and energy-

efficient analytics on low-power IoT clients. Joltik enables this

by optimizing universal sketching for storage, computation, and

communication, making it compatible with low-power clients. A

detailed evaluation demonstrates 96% reduced power consumption

compared to transmitting raw data, 97.9% accuracy in computing

valuable statistics on client data within a storage space of 60 KB.

We believe Joltik presents an interesting opportunity in de-

veloping sketches for low-power IoT clients that are particularly

amenable to highly data-intensive machine learning algorithms

including deep learning. This will allow the vast computation re-

sources at the edge and cloud to leverage rich sensed information

for various applications, while maintaining the energy-efficiency

of individual sensors.
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