
Exploring mmWave Radar and Camera Fusion for High-Resolution
and Long-Range Depth Imaging

Akarsh Prabhakara, Diana Zhang, Chao Li, Sirajum Munir, Aswin C. Sankaranarayanan,
Anthony Rowe and Swarun Kumar

Abstract— Robotic geo-fencing and surveillance systems re-
quire accurate monitoring of objects if/when they violate
perimeter restrictions. In this paper, we seek a solution for
depth imaging of such objects of interest at high accuracy (few
tens of cm) over extended ranges (up to 300 meters) from a
single vantage point, such as a pole mounted platform. Unfortu-
nately, the rich literature in depth imaging using camera, lidar
and radar in isolation struggles to meet these tight requirements
in real-world conditions. This paper proposes Metamoran, a
solution that explores long-range depth imaging of objects
of interest by fusing the strengths of two complementary
technologies: mmWave radar and camera. Unlike cameras,
mmWave radars offer excellent cm-scale depth resolution even
at very long ranges. However, their angular resolution is at least
10× worse than camera systems. Fusing these two modalities
is natural, but in scenes with high clutter and at long ranges,
radar reflections are weak and experience spurious artifacts.
Metamoran’s core contribution is to leverage image segmenta-
tion and monocular depth estimation on camera images to help
declutter radar and discover true object reflections. We perform
a detailed evaluation of Metamoran’s depth imaging capabilities
in 400 diverse scenarios. Our evaluation shows that Metamoran
estimates the depth of static objects up to 90 m away and
moving objects up to 305 m away and with a median error
of 28 cm, an improvement of 13× over a naive radar+camera
baseline and 23× compared to monocular depth estimation.

I. INTRODUCTION

Surveillance and geo-fencing are classic problems in
robotics, where one seeks to identify specific objects of
interest and observe if they violate perimeter restrictions.
Moving beyond short range applications where depth cam-
eras thrive [1], we ask the question, “what does it take to
build a single fixed vantage point sensing solution that can
create accurate depth images of objects at long ranges?” A
single vantage point solution allows for quick deployment
in scenarios where infrastructure is hard to come by, with
minimal calibration. For example, one can imagine a single
pole-mounted platform that monitors people or vehicles tres-
passing large private areas or drones entering no-fly zones.

Several sensors such as cameras [2], [3], [4], lidars [5]
and radars [6] have been used for single vantage point
depth imaging. Monocular solutions [2] experience tens of
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meters of error for objects beyond ∼30 m. Standalone lidar
solutions provide sparse but accurate depth estimates over
ranges of 100-200 m [7]. Indeed, sensor fusion approaches
combining camera and lidar [8], [9], [10] have recently been
proposed to generate high angular resolution, accurate depth
images. However, real world lidar data fails to detect certain
objects between 30-50 m depending on object reflectivity
characteristics, orientation and ambient sunlight (Sec. VI).
This motivates us to explore other sensing modalities such
as radar which has become popular owing to availability
of large frequency spectrum in millimeter wave (mmWave)
frequencies (60 and 77-81 GHz).

One of the most appealing features of mmWave radars
is its high bandwidth, which enables object detection often
as far as 150-300 m at cm-scale depth resolutions. Yet,
mmWave radars, by themselves, are not a high angular
resolution depth imaging solution because of the limited
number of antennas that are packed on a small form factor
radar. The best commercially-available radars achieve an
angular resolution of 1.5◦ [6], which is at least 10× worse
than cameras. Previous works have compensated for the poor
angular resolution by fusing with camera [11], [12], [13] but
only for short range (10-20 m) — where their impressive
operating range and depth resolutions are not fully utilized.

This paper considers the unique problem of mmWave
radar and camera sensing for long-range depth imaging of
specific objects of interest (both static and dynamic). This is
challenging because unlike systems that operate over short
ranges, the first peak detected in radar doesn’t necessarily
correspond to the detected object in the image. This is
primarily because of overwhelming reflections from ambient
but out of interest objects that can clutter the scene. Static
cluttered scenes are more challenging because traditional
Doppler processing doesn’t help. We propose Metamoran
which leverages semantic information from a monocular
camera to help the radar disambiguate between objects of
interest and clutter.

An intuitive starting point for Metamoran to eliminate
unnecessary clutter is to segment the camera image (see
Fig. 1a) and use the radar to look for peaks only within
the angular span (θ1, θ2, ϕ1, ϕ2) occupied by the objects of
interest as identified in the segmentation output. This helps
the radar ignore reflections from out of interest objects.
A practical challenge in designing this arises because of
strong clutter from objects such as buildings, lamp posts and
fences. The presence of a strong reflector creates undesirable
side lobes that spread across the angular axis (see Fig. 1c).
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Fig. 1. Metamoran takes camera and mmWave radar signals as input, tackles clutter and produces high resolution depth images of objects of interest by
co-optimizing radar processing with inputs from computer vision techniques such as image segmentation and monocular depth estimation.

This implies that even after segmenting radar to only angles
where the object of interest is present, side lobes from strong
reflectors at other angles create ghost peaks within the angles
of interest. This is extremely critical as depth estimation can
have significant errors if ghost peaks are selected.

To tackle this challenge, we design a new radar processing
algorithm which selects the correct peaks by leveraging the
camera image. Our key idea is unlike clutter, the peaks in
radar images of an object of interest look like the object. For
example, the contour of a car is quite evident in Fig. 1d.
Using image segmentation and monocular depth estimation,
we obtain these contours which capture object type, angles of
interest, and objects’ internal depth variation, although not on
an absolute scale. We use this estimated contour to synthesize
templates of radar signal that would have been measured
if no other objects were in view. Our processing uses this
template to suppress clutter, maximize the signal strength of
objects of interest and find the true peak in radar. The depth
so obtained is cm precise owing to the high depth resolution
of mmWave radars. The rest of our pipeline is designed to
further eliminate the side lobes and use the estimated depth
to create a high angular resolution, accurate depth image.

Contributions: We make the following contributions:
• A radar processing system that combines semantic camera

data to find objects of interest in mmWave signals, in high
clutter and resulting undesirable radar side-lobes (Sec. III).

• A pipeline that fuses high angular resolution monocular
depth estimation with accurate radar depth estimation to
create a depth image (Sec. IV).

• A detailed implementation including extensive raw radar
data1 (static and dynamic scenes totaling 125 GB) along
with high resolution, raw camera images and ground truth
based on lidar in diverse scenes outdoors (Sec. V).

• Evaluation of Metamoran in various high-clutter environ-
ments to demonstrate substantial improvements in long
range depth imaging. (Sec. VII).
While this paper is focused on robotic surveillance as

the key application use case, radar-camera fusion for depth
imaging is valuable for other wide ranging applications:
autonomous driving and enhanced robotic perception. This

1https://www.witechlab.com/metamoran.html

study provides the tools needed to enable a richer exploration
of robotic use cases for hybrid mmWave and camera sensing.

II. RELATED WORK

mmWave Radar Imaging: With the proliferation of
mmWave radar devices, radio frequency imaging, which used
to be prevalent in lower frequencies [14], is reaping benefits
from the wide bandwidth available at mmWave frequencies.
More recently, radar angular resolution is being improved
using deep learning [15], [16] and through synthetic aperture
[17], [18], [19] for a variety of contexts including high
fidelity through wall/obstruction imaging. While comple-
mentary, these solutions are not designed to produce high-
resolution depth images at extended long distances.

Radar-Camera Fusion: Camera and radar fusion has been
proposed for robust object perception and detection [12],
target tracking [11], [13], obstacle detection [20], [21], [22]
and autonomous driving [23], [24]. While the problem of
depth imaging is different, it is important to note that some of
the older works use mechanical scanning radar or electronic
scanning with a very narrow FoV which leads to denser
and less cluttered output. More recently with the availability
of point cloud radar data through nuScenes, deep learning
fusion techniques for 3D object detection [25], [26] have
been proposed. In contrast to the point cloud data, we collect
raw radar signals because our processing algorithms are
not learning based and they rely on using the phase and
amplitude of the time series signal, and not just point cloud
intensity. Few other works also create their own dataset [27],
but they operate in short ranges of 0-25 m. Beyond drawing
bounding boxes for 3D object detection, in this work our
problem definition involves imaging, that is obtaining the
depth variation across RGB pixels for an object of interest.

Radar Clutter Suppression: Traditional algorithms to
tackle radar clutter include Doppler processing to detect
moving objects in a static background scene. Here, we are
interested in both static and dynamic objects. While dealing
with static clutter when detecting a static object, the clutter
profile must be first computed. Some of these techniques
include subspace projection [28] and adaptive filtering [29].
These techniques only use radar information. In this work,

https://www.witechlab.com/metamoran.html


by building a radar and camera fusion system, we not only
leverage radar data but also camera semantic data to search
for object of interest and suppress clutter.

III. ACCURATE DEPTH ESTIMATION

The first step in performing Metamoran’s depth estimation
isolates the object of interest in the radar image in high clut-
ter environments using information from the corresponding
camera image. This step is crucial in removing the impact of
clutter in the radar image that may otherwise be misled by
non-existent or irrelevant objects in the scene. The specific
approach we use for camera image pre-processing is panoptic
segmentation, which identifies spatial bounds and attaches
semantically meaningful labels to objects in the image.

Image Segmentation Pre-processing: We perform image
segmentation using pretrained Detectron2 [30]. This model
has been previously trained on several objects including cars
and persons in various short and long range environments.
We use these types of objects as our primary test subjects
without additional model tuning. The output of image seg-
mentation is a segmentation mask (the angular bounds of an
object), a semantic label for the mask (e.g. car, person, etc.)
and instance ID (to identify specific cars, etc.).

Radar Processing Pipeline: We then use the output of
image segmentation to carve out objects of interest in the
radar image (i.e. heatmap as in Fig 2). For example, if a car
lies in line of sight between −5◦ and 0◦, the radar heatmap
seen in Fig 2, is truncated to these angular limits. Assuming
that the object is in line of sight with respect to radar, in an
ideal world, within the angular limits there should only exist
peaks corresponding to the object of interest and nothing
else. However, in high clutter environments, strong, out of
interest reflectors which can even lie outside the angular
limits, tend to leak their signal into angles of interest (see Fig.
2). Such strong reflectors like buildings, tend to spread out
their signal along the azimuth axis in a sinc-like fashion with
decreasing side lobe levels. These side lobes affect across
all angles at the same range bin and show up as false peaks
within the angle of interest. A naive radar camera fusion
would end up choosing these false peaks. The rest of this
section describes our approach in accurately detecting peaks
even in the presence of high clutter.

A. Computing Object Depth

After segmenting the radar image to the desired angles
of interest, Metamoran’s key next step is a novel radar
processing algorithm, which searches for peaks that resemble
the shape of the object. Our idea is to first build an approx-
imate shape of the object by leveraging camera data and
then look for this shape in the radar image. Specifically, we
use monocular depth estimation, a classic image processing
solution that captures the relative depth variation (i.e. shape)
of all objects in the entire scene in an RGB-D depth image.
Our specific choice of monocular depth estimation on camera
data is AdaBins [2] (see example output in Fig. 3) which is
trained on extensively used KITTI dataset [31]. While it is
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Fig. 2. Metamoran tackles the overwhelming clutter from strong reflectors
such as buildings which dwarf the reflection from desired objects.

highly accurate in capturing the depth variation of an object,
a downside of monocular depth imaging is that it is poor
in terms of absolute depth accuracy, when compared to cm-
scale accuracy of radars. We therefore seek to capture the
absolute depth information of the object, whose shape we
found through monocular depth estimation, using a radar
processing pipeline that we describe below.

Mathematically, let P be the binary mask which corre-
sponds to the pixels of the object of interest as obtained
through image segmentation. The monocular depth estimate
obtained from [2] can be captured in a matrix M , which
is basically the “D” slice from RGB-D image. We can then
obtain the approximate 3D shape S of the object by element
wise multiplication of M and P . S is now a matrix which
is largely 0, but in pixels where object is present, it has
monocular depth estimates. Because we are using a 2D radar
(range and azimuth) with a narrow elevation FoV, rather than
using the full 3D shape, we extract a contour C as essentially
a row chosen from S. The row index translates to elevation
angle and if radar and camera are co-located, we simply
choose the centermost row. The column index translates
to azimuth angle and we convert the column indices to
appropriate azimuth angles. Choosing non-zero elements in
this row, we have a point cloud that can be indexed by
azimuth angle and depth value. The contour captures 2D
shape of the object – that is, depth variation over azimuth (see
Fig. 3). We can then transform these coordinates to C(x, z).
The depth values obtained so far are not accurate, because
they are still monocular estimates.

With the obtained shape, Metamoran next models the
reflections that the radar would have received if only points in

Algorithm 1: Depth Estimation Algorithm
Input : Image Segmentation Object Mask, P

Monocular Depth Estimation, M
Raw I/Q Radar capture, h

1 S = M · P // Approximate 3D shape of object

2 C(x, z) = GETSHAPECONTOUR(S(x, y, z))
3 for depth d do
4 hd

template =SHIFTTODEPTH(C(x, z), d)

5 P (d) = corr(hd
template, h) // Matched Filter

6 d∗ = argmax
d

P (d) // Depth Estimate

Output: d∗ // Depth Estimate
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Fig. 3. Metamoran uses information from camera image segmentation
and monocular depth estimation to obtain a coarse contour of the object of
interest. It then uses this contour to perform correlation to find the object
in radar image amidst clutter and thereby estimate its depth accurately.

C were present without any clutter. Metamoran synthesizes
the contour signal template by modeling each point on the
contour C(x, z) as a point reflector. In its simplest form,
one can obtain this point’s contribution to the synthesized
Frequency Modulated Continuous Wave signal as [32]:

htemplate;i(n) = αej
4πDi

λ ej2π
Di

Dmax
n (1)

where, α is the amplitude of the received signal, Di is the
distance between (xi, zi) and the radar antenna, Dmax is the
maximum distance that the radar is configured to operate, λ
wavelength, n indexes digital time series samples, and j =√
−1. Superposing each point’s contribution we obtain the

overall signal template for the entire contour as htemplate.
Finally, Metamoran explores at what absolute depth the

shape-contour in C is present within the radar image. To
compute this depth, Metamoran shifts the point cloud dif-
ferently such that absolute depth of the closest point is at
different d, synthesizing a new template each time hd

template,
and applies a matched filter to obtain P (d) – the correlation
of the contour template, at each possible depth d, with respect
to the measured radar signal. Mathematically, if h is the
original received radar signal, we have:

P (d) = corr(hd
template, h)

This correlation is performed across h measured at each
radar antenna and then aggregated. We then report the depth
estimate of this object as the value of d that corresponds to
the maximum of |P (d)|, i.e.

d∗ = argmax
d

|P (d)|

With d∗, we know accurately the closest depth of the ob-
ject with respect to the radar. The matched filtering operation
essentially searches for the objects’ shape and promotes the
signal strength corresponding to the objects’ reflections but
not clutter. The computational complexity of such a method
with D different depths of interest and N length vector h
would be O(DN2). Additionally this complexity can be
reduced by converting correlations to FFTs and searching
over different depths hierarchically from coarse to fine.

In this subsection, we showed that by using segmentation
and monocular depth estimation, we can pick the objects’
peaks accurately. To further help finding objects’ peaks in
cluttered conditions, the following subsection describes how
camera information can also be used to suppress the clutter.

B. Clutter Suppression

Clutter due to strong reflections from undesired objects
can impede Metamoran. For instance, even if an undesired
object is at an azimuth significantly different from the desired
object, it’s side lobes can create ghost peaks that causes
interference. Worse still, some reflectors may be orders of
magnitude stronger than our desired object, and thus even
their side lobes can dwarf our objects of interest. Fig. 2
shows an example of a highly cluttered scene. Our objective
here is to remove unwanted clutter to focus on the object
of interest. While the shape-correlator based detector was
designed to avoid choosing ghost peaks, if the object of
interest is dwarfed by very strong reflections, then these can
trigger the correlator detector and result in a faulty depth
estimates. Therefore, one must perform a declutter phase
prior to applying Metamoran’s shape correlator.

Specifically, in Metamoran, we look for semantic objects
that are usually strong reflectors such as buildings, fences
and lamp posts using the camera segmentation output. For
each such strong peak outside the angle of interest, we treat
it as a point reflector at a certain detected range and azimuth,
and synthesize a template following Eqn. 1, which captures
its contribution to the measured signal. A key point to note
is that because these are strong reflectors, α of the template
is chosen to be equal to the peak value. This template is
then subtracted from the measured radar signal. We iterate
over several such peaks many times until the magnitude of
the peaks in the angles of interest are comparable to the
expected magnitude of an object reflection. This is analogous
to successive interference cancelation in RF communica-
tion [33]. What this process accomplishes is the removal
of side lobes from these large peaks within our angles of
interest – thereby enabling robust object peak detection. For
P peaks this algorithm is essentially subtracting the template
P times giving a computational complexity of O(P ).

IV. DEPTH IMAGING

We note that our current description of Metamoran’s
algorithm provides only one depth value per object template,
i.e. one depth per object. In practice, we deal with extended
objects and we would require a depth image across the
object. We could use local peaks from the clutter-suppressed
radar image near the peak depth value obtained from shape-
correlation algorithm. But, the point cloud so obtained is
very sparse and only becomes sparser with increasing object
distances. To mitigate this, we rely on fusing the sparse but
accurate radar peaks obtained from shape-correlator with the
output of the dense camera-image based monocular depth
estimation discussed previously (AdaBins [2], see Fig. 3).
However, two problems persist in realizing this fusion.
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Fig. 4. Metamoran vs. Radar and Monocular Estimation: A qualitative comparison of the depth images in a clutter free, close range scene shows
standard radar to be coarse in azimuth resolution, monocular to have significant absolute depth offsets but great azimuth diversity, and Metamoran which
leverages rich shape information from image pre-processing to generate an accurate, dense depth image. At longer ranges, monocular depth estimates
would deviate several meters and radar would get sparser.

Correcting Absolute Errors: While monocular depth
estimation may often correctly return the relative depths
between parts of a large object such as a car, it often makes
large errors in absolute depths, particularly for objects at long
ranges (see Table I). To fuse monocular and shape-correlator
output, we want them to be absolute depth aligned. To re-
solve this, we rely on more accurate absolute depth estimate
from radar obtained in Sec. III-A and shift monocular depth
point cloud such that the closest point is at d∗.

Correcting Relative Errors: After aligning the monocular
depth estimates with the sparse point cloud from Meta-
moran’s shape-correlator, a naive way to fuse this would
be consider all points from both modalities. But, as seen in
Fig. 4, edges of monocular estimates tend to deviate quite
significantly from the primary contour outline of the object.
This could be because of imprecise segmentation or that
monocular depth estimation often struggles with objects that
do not have significant variation in color with respect to the
background or sharp edges that intuitively simplifies depth
estimation [34], [35]. If fused as is, one would experience
higher errors as expected from monocular depth estimation.
It is therefore important to select points from the aligned
monocular depth estimates that only lie along the primary
contour outline and reject outliers. We note that the number
of points detected per azimuth bin in monocular estimates
fall off sharply at the edges where our outliers of interest
lie. By using a simple threshold based outlier detection, we
identify points which actually lie along the primary contour.
Upon fusing selected monocular depth estimate points and
sparse point cloud from Sec. III-A, we obtain a depth image,
that resembles ground truth lidar and outperforms different
algorithms using either of the two modalities in terms of
azimuth resolution and depth accuracy (see Fig. 4).

V. IMPLEMENTATION AND EVALUATION

System Hardware: Metamoran is implemented using a
FLIR Blackfly S 24.5MP color camera and a TI MMWCAS-
RF-EVM RADAR (see Fig. 5). We operate the radar at 77-
81 GHz in a TDM-MIMO mode. This radar has a theoretical
range resolution of 3.75-60 cm, depending on max range.
The radar also has 86 virtual antennas spaced out along the
azimuth axis with a narrow elevation FoV, which provides
a theoretical azimuth resolution of 1.4◦. This is at least an

115 m
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Fig. 5. Metamoran’s Hardware Platform: We use a FLIR Blackfly S
24.5MP color camera and a TI MMWCAS-RF-EVM mmWave radar. We
deploy our system in outdoor spaces with high clutter.

order of magnitude worse than cameras and lidars. Unlike
fusion approaches which rely on processed point clouds [36],
this radar supports logging raw complex samples which is
critical for our processing. The whole hardware system is
kept about 1 m above ground level during data collection.

Testbed and Data Collection: We test this system in a
variety of 400 outdoor scenes such as parking lots and roads
at distances ranging up to 320 m from objects of interest.
These environments have rich clutter sources arising due to
buildings, street lamps, fences, trees, trains, out of interest
parked cars and pedestrians. Fig. 5 shows four candidate
locations in the area surrounding a university campus.

Ground Truth: We collect ground truth data using a
Velodyne Puck Lidar (VLP-16), which generates 3D point
clouds, with fine angular resolution and 3 cm ranging error.
While this lidar is rated for up to 100 m, in practice, on a
sunny day, we found the Puck collected data with sufficient
point cloud density only until about 20-30 m. Therefore, for
ranges beyond 20 m, we surveyed a point closer to the object
of interest and placed the lidar at that point.

Baselines: We compare Metamoran with two baselines that
use the same hardware platforms: (1) Monocular Depth Esti-
mation: We use state-of-the-art monocular depth estimation
algorithm [2]. (2) Naive fusion of Camera and Radar: We
use image segmentation to obtain the azimuth spanned by
object of interest. We perform standard radar processing for
FMCW radar, and bound the output to the azimuth span and
then pick the strongest reflector as the object.
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Method
All classes

Across object types Across range bins

Car Metal Objects Person 0-20m 20-40m 40-60m

MAE STD MAE STD MAE STD MAE STD MAE STD MAE STD MAE STD

Monocular [2] 6.50 7.97 6.06 7.12 9.56 8.11 5.16 9.23 0.60 1.30 6.75 3.41 19.43 4.00

Naive Fusion 3.75 9.34 2.07 8.91 7.25 8.37 5.04 10.62 0.18 2.19 7.00 7.19 15.95 11.09

Metamoran (ours) 0.28 2.35 0.02 2.28 0.85 1.89 0.57 2.75 0.06 0.94 0.71 3.05 1.27 1.94

TABLE I
DEPTH ESTIMATION ERRORS: METAMORAN OUTPERFORMS BOTH BASELINES FOR A VARIETY OF OBJECTS WITH DIFFERENT REFLECTIVITIES, IN

DIFFERENT ORIENTATIONS AND LONG RANGES. MAE- MEDIAN ABSOLUTE ERROR (IN METERS) STD- STANDARD DEVIATION (IN METERS).
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Fig. 9. Metamoran leverages radar doppler processing to detect and range moving objects even at 300 m where their RSSI (Received
Signal Strength Indicator) is about 20dB lower than the surrounding static clutter.

Objects of interest Selection: We select a car, a person and
metal objects (such as stop signs) for use as our objects of
interest as these are useful for varied applications, including
surveillance. Our choice also provides a variety of reflectors
in size, shape, and reflectivity. We note that in Metamoran,
we detect both static and moving objects. Indeed, static
objects are much more challenging to detect in radar because
Doppler filtering cannot be used to remove clutter.

Calibration: We note that data Metamoran collects requires
both internal calibration of the components as well as exter-
nal calibration between the camera and radar. Internally, our
mmWave radar is calibrated using a corner reflector placed
at 5 m [37]. The camera intrinsics are measured by taking
many photos of a checkerboard to remove fisheye distortion.
Externally, even though both sensors are co-located, they are
at a small relative vertical displacement of 15 cm and relative
rotations. Prior to fusing, these offsets are compensated to
ensure consistency.

VI. MICROBENCHMARKS

Method: We study lidar’s maximum detection range and
the distance at which we have sufficient point cloud density
for use as ground truth. We collect the lidar data of objects
at different ranges but the same orientation towards the lidar.

Results: We noticed that the maximum detection range
depends on object reflectivity characteristics. We see in Fig.

6 that only one point from the front of the car (without a
license plate) is detected between 30-50 m. Depending on
the color of the paint and orientation of the car, we observed
that the front would stop being detected even between 25-
30 m. This could largely be because of mirror-like reflectivity
causing reflections to never return to lidar. However, objects
with retroreflective surfaces such as rear of the car with
license plate and our chosen metallic objects are detectable
up to 114.3 m and 114.6 m respectively. A person being
a diffuse scatterer is detectable up to 64 m. Surveillance
applications cannot afford to make any assumptions on the
mirror like/retroreflectivity of objects. Although, specular
properties have been investigated in radar [38], we show
that without making any reflectivity assumption Metamoran
can detect all orientations of car, metallic objects and person
effectively. Note that point cloud density drops drastically as
objects move away. We pick 20 m as the range with sufficient
point cloud density. For collecting ground truth beyond 20 m,
we move the lidar closer to the object.

VII. RESULTS

A. Depth Estimation

Method: We first evaluate depth estimation accuracy by
collecting data samples in varying lighting conditions at 4
clutter rich sites. Static objects were positioned from 3-90 m
and were placed in various orientations with respect to radar
and camera setup. Data was collected in 3 range bins at



Method
All classes

Across object types Across range bins

Car Metal Objects Person 0-20m 20-40m 40-60m

MAE STD MAE STD MAE STD MAE STD MAE STD MAE STD MAE STD

Monocular [2] 3.53 7.20 3.16 6.05 7.58 7.56 4.15 8.46 0.17 0.83 3.83 2.90 17.08 4.48

Naive Fusion 5.13 9.11 2.27 8.39 7.77 8.38 7.39 10.50 0.30 1.93 6.08 7.70 14.58 9.28

Metamoran (ours) 0.82 2.26 0.70 2.39 1.17 1.77 1.07 2.42 0.25 0.90 1.50 2.72 1.77 2.00

TABLE II
DEPTH IMAGING ERORS: METAMORAN GENERATES HIGH RESOLUTION, ACCURATE DEPTH IMAGES OF OBJECTS AT LONG RANGES.

MAE- MEDIAN ABSOLUTE HAUSDORFF DISTANCE (IN METERS) STD- STANDARD DEVIATION (IN METERS)

different resolutions: 4.2 cm at 0-20 m, 11.6 cm at 20-60 m,
21 cm at 60-90 m. The primary bottleneck in maintaining
4 cm range resolution at long ranges is the TDA2SX SoC
capture card on the MMWCAS board – it can handle at most
a data width of 4096, corresponding to 512 complex samples
per receiver. Thus at longer ranges, we can’t utilize the full
potential of mmWave range resolution.

Depth error is measured at the object point which is closest
to the radar. For each baseline and Metamoran, we compare
median absolute error (MAE) with respect to lidar. Below,
we represent three sets of depth errors: (1) across object
categories (2) across different range bins (3) overall error
distribution. Across all experiments, we find that Metamoran
significantly outperforms the baselines.

Object Results: Table. I shows the median error in depth
across objects of interest. We see lowest error for car across
the board due to a combination of factors: car is our strongest
reflector, offers multiple points on its surface to reflect
radar signals due to its size and thereby a high radar cross
section. We see performance further degrade with the weaker
reflectors. Metallic objects have a higher error compared
to person because although it’s more reflective to radar, it
suffers from specular reflections.

Range Results: Table. I also shows the median error in
depth across range bins. As expected, accuracy across all
approaches deteriorates with range due to weaker received
signals. Here, we can clearly see monocular estimation
suffer beyond the 20-40 m bin and also see the effects of
clutter rendering naive fusion erroneous. Metamoran which
tackles clutter continues to do well even in 40-60 m bin.
For experiments performed in the 60-90 m range bin, our
baselines encounter huge errors. Because of extremely low
received power, metallic objects and person are no longer
detectable even with the assistance of Metamoran. However,
Metamoran detects cars up to 90 m with a MAE of 1.1 m
and standard deviation of 2.45 m.

CDF Results: Fig. 7 shows the overall distribution of
our depth errors. Metamoran has a median error of 0.28 m
across all collected data. Metamoran clearly outperforms the
baselines to accurately detect a variety of objects in differ-
ent orientations and in high clutter environments. Between
monocular and naive fusion, we can see that naive fusion
benefits from the fusion and has a lower MAE but suffers
due to high clutter and has long tailed distribution.

B. Extremely Long Ranges
Method: To evaluate the maximum detection range of
Metamoran we perform the following experiments. We have
already found the limit for static objects in high clutter as
90 m. We now leverage Doppler processing that Frequency
Modulated Continuous Wave (FMCW) radars are capable of
to detect moving objects. Although FMCW is very popular
for today’s radars, modern lidars are largely time-of-flight
based. Therefore, in building a fusion system, radar Doppler
processing brings unique advantages. To evaluate the true
radar detection ability we collect data for moving car, person
and metallic objects up to 320 m. For every data snapshot
collected, the object moves at a slow speed towards the
radar. For these ranges, we collect the data at 30 cm range
resolution up to 120 m and 60 cm resolution up to 320 m.

Results: We see in Fig. 9 that the received signal strength
drops consistently until 305 m, when it hits the noise
floor. The signal strength variations are particularly large
for metallic objects because they are sensitive to orientation
with respect to radar. The person is detected up to 229 m,
metallic objects up to 298 m and car up to 305 m. Although
the reflection from these objects at long ranges are extremely
small compared to background clutter, just because they are
moving, Doppler processing can still detect the objects. We
also see that in Fig. 9 the depth errors increase with distance
as expected. Because of the radar resolution of 60 cm, at
these long ranges, even for cars the errors can reach 1.5 m.
Given enough signal integration, these errors should decrease
and reach the resolution limit. As long as the radar detects
these objects and estimates depth accurately, Metamoran’s
depth imaging algorithms are still applicable albeit with the
help of a pan, tilt, zoom camera to get a high resolution
camera image of the object for fusion.

C. Depth Imaging
Method: To compute high resolution depth images, we
implement the method in Sec. IV. In contrast to Sec. VII-
A which only computed depth errors, here we want to
characterize accuracy for a point cloud obtained from the
baselines monocular depth estimation and naive fusion of
camera and radar, and our system against lidar point clouds.
Data was collected similar to Sec. VII-A.

To compare two point clouds A and B, we use a modified
version of Hausdorff distance [39] as follows:

min

{
median

a∈A

{
min
b∈B

{d(a, b)}
}
,median

b∈B

{
min
a∈A

{d(b, a)}
}}



where d(a, b) is the distance between points a and b. Haus-
dorff distance is popularly used in obtaining similarity scores
between point clouds. Intuitively, this metric measures the
median distance between any two points in the point cloud.
The lower the distance, the more similar the point clouds.

Results: Table. II shows our depth imaging results. Trends
in imaging results largely follow those in depth estimation,
as problems with detection propagate through the pipeline.
Metamoran outperforms both baselines across all categories,
except 0-20 m where all three methods produce comparable
results. Fig. 8 shows CDF of errors in depth imaging.
Metamoran has a median absolute error of 0.82 m across all
collected data. We note that monocular depth estimation out-
performs naive fusion unlike in Sec. VII-A. This once again
shows that, while monocular benefits from large azimuth
span of points for extended objects like cars, high clutter
makes naive fusion pick wrong depth estimates which lead
to larger imaging errors. We also find that for experiments
performed in the 60-90 m range bin, Metamoran successfully
images static cars with a MAE of 1.98 m and standard
deviation of 1.7 m.

VIII. CONCLUSION

This paper develops Metamoran, a mmWave radar and
camera based system that achieves high resolution depth
images for objects at long ranges and in high clutter environ-
ments. Metamoran’s secret sauce is in leveraging processed
camera information to declutter the scene, eliminate false
peaks and identify the right peaks. Metamoran also uses the
detected peak and processed camera information to create a
high resolution depth image of desired objects. Metamoran
was evaluated extensively up to 300 m. The resulting dataset
is extremely valuable to the robotics community as it offers
ground truth lidar, camera and raw radar data. We believe
there is a strong role for Metamoran’s radar-camera fusion,
as a complementary approach to lidar, in deploying rich
robotic applications such as robotic and autonomous vehicu-
lar navigation and sensing, while ensuring overall resilience
to occlusions and weather conditions.
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