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ABSTRACT
Recent years have seen major innovations in cross-layer wireless

designs. Despite demonstrating significant throughput gains, hardly
any of these technologies have made it into real networks. Deploy-
ing cross-layer innovations requires adoption from Wi-Fi chip man-
ufacturers. Yet, manufacturers hesitate to undertake major invest-
ments without a better understanding of how these designs interact
with real networks and applications.

This paper presents the first step towards breaking this stalemate,
by enabling the adoption of cross-layer designs in today’s networks
with commodity Wi-Fi cards and actual applications. We present
OpenRF, a cross-layer architecture for managing MIMO signal pro-
cessing. OpenRF enables access points on the same channel to
cancel their interference at each other’s clients, while beamform-
ing their signal to their own clients. OpenRF is self-configuring, so
that network administrators need not understand MIMO or physical
layer techniques.

We patch the iwlwifi driver to support OpenRF on off-the-shelf
Intel cards. We deploy OpenRF on a 20-node network, showing
how it manages the complex interaction of cross-layer design with
a real network stack, TCP, bursty traffic, and real applications. Our
results demonstrate an average gain of 1.6× for TCP traffic and
a significant reduction in response time for real-time applications,
like remote desktop.

Categories and Subject Descriptors C.2.2 [Computer
Systems Organization]: Computer-Communications Networks

Keywords MIMO, Cross-Layer, Wireless, SDN

1. INTRODUCTION
Recent years have witnessed the boom of cross-layer wireless de-

signs like SAM [28], Jello [32], MegaMIMO [23], WhiteRate [22],
TIMO [10], SoftPHY [31], and many others [16, 29, 6, 11]. Instead
of treating the physical layer as a black box, these systems jointly
optimize network protocols and physical-layer signal processing.
Collectively, they have created a rich literature of cross-layer de-
signs that are implemented in software radios and have shown large
throughput gains. Unfortunately, hardly any of these ideas have
made it into Wi-Fi chips or real networks. Indeed, a form of stale-
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Figure 1—Architecture of OpenRF. OpenRF provides an inter-
face to physical-layer MIMO signal processing, e.g., interference
nulling, interference alignment, and beamforming. The OpenRF
Controller coordinates network devices through this interface.

mate exists: The research community is waiting for cross-layer in-
novations to be implemented in Wi-Fi hardware so that they may be
used in operational networks. Yet, Wi-Fi chip manufacturers cannot
make expensive hardware investments without better understanding
how these designs interact with real applications and real networks.
The situation evokes a similar picture from 10 years ago, when In-
ternet protocols were developed and demonstrated in small testbeds
and the ns simulator, but were not adopted by switch manufacturers.
Wired networks broke this cycle by building innovations in com-
modity hardware and directly deploying them in operational net-
works. OpenFlow, Ethane, and the body of work that led eventually
to software defined networks (SDNs) have pioneered this path. We
believe that, similarly, cross-layer research needs to start targeting
commodity Wi-Fi cards, actual applications, and today’s networks.

This paper takes the first step towards this goal. It presents
OpenRF, a cross-layer architecture for MIMO interference manage-
ment. OpenRF resides on Access Points (APs) and enables them to
control MIMO signal processing at the physical layer. Specifically,
OpenRF provides the following capabilities:

• It enables commodity Wi-Fi APs to perform three MIMO inter-
ference management techniques: interference nulling [11], co-
herent beamforming[23] and interference alignment[16].
• It is self-configuring. Network administrators need not under-

stand MIMO signal processing and when to apply a particular
interference management technique. OpenRF automatically in-
fers the interference layout of the network, and dynamically ap-
plies the right combination of interference nulling, alignment, or
beamforming, wherever they are beneficial.
• It translates high-level quality of service requirements of down-

link traffic to low-level physical-layer MIMO techniques. For in-
stance, an administrator may request OpenRF to guarantee a min-



imum rate to real-time applications in the network (e.g., remote
desktop or VOIP). OpenRF employs MIMO signal processing to
control interference across APs and deliver the desired rate.
• Finally, OpenRF is fully compatible with commodity 802.11n

cards that implement transmit beamforming, an 802.11n optional
feature. We have built OpenRF as a patch to the iwlwifi driver for
Intel 5300 cards, providing researchers and network administra-
tors the ability to deploy it in their networks to experience the
benefits of cross-layer MIMO, or experiment with new physical-
layer MIMO designs.

Architecturally, OpenRF borrows from the SDN design, in that it
separates the control plane from the data plane and exposes func-
tions that have traditionally been deeply hidden in the network
stack, to higher layers. As illustrated in Fig. 1, the data plane is con-
trolled by the OpenRF interface, which resides on access points and
shields other components from how signal processing techniques
are implemented at the device level. Analogous to the OpenFlow
interface, the OpenRF interface operates over a table of (FlowID,
Actions) tuples. In contrast to OpenFlow entries, where an action
may identify which port to transmit the flow on, here, an action
specifies the relative power used to transmit the flow on each of
the AP’s antennas. This is typically referred to in MIMO terms as
the pre-coding vector of the flow. Just as forwarding steers a flow’s
packets toward a particular route in the wired network, pre-coding
steers the PHY signal and creates a beam that propagates along a
particular spatial direction, allowing the system to null interference
at an unwanted receiver and focus the power on the desired receiver.

The control plane in our design is managed by the OpenRF Con-
troller. It is configured with per-flow quality of service (QoS) re-
quirements (e.g., a desired rate), as well as which PHY actions are
supported by the OpenRF interface. It also periodically takes as in-
put channel measurements from the APs. Using this information,
the controller maps the QoS requirements into PHY actions like
nulling, beamforming, or alignment. The controller then fills up the
OpenRF table with these actions mapped to various flows, so that
the needs of each flow can be satisfied.

A key challenge in OpenRF is the need to ensure the whole net-
work stack operates reliably, while performing MIMO interference
management. In other words, OpenRF has to account for TCP and
application burstiness and the resulting dynamism in the interfer-
ence patterns. Another challenge stems from the interaction be-
tween physical layer techniques and the 802.11 protocol. In partic-
ular, PHY techniques achieve gains by enabling concurrent trans-
missions using intelligent interference management. However, the
802.11 protocol is designed under the assumption that transmitters
in the same interference region should not transmit concurrently.
This assumption manifests itself in its handling of end-to-end relia-
bility and related functions such as carrier sense, acknowledgments
and retransmissions. OpenRF has to ensure concurrent transmis-
sions at the PHY-layer without compromising 802.11’s reliability.
In §4 and §5 we explain these challenges in detail and we describe
how OpenRF addresses them.

We have built a prototype of OpenRF on Intel 5300 Wi-Fi
adapters. We patched the iwlwifi driver to enable nulling, align-
ment, and beamforming, separately and combined. We deployed a
20-node network, where six of the nodes act as APs and the rest
are clients. We compared the performance of the network with and
without OpenRF. Our results show the following.

• In a network of 20-nodes, and for a random setup of TCP and
UDP flows, the aggregate performance gain in terms of through-
put of UDP and TCP flows are 1.7× and 1.6× respectively.
• We also evaluate the impact of OpenRF on the quality of real-

time applications. In particular, we evaluate rich applications
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Figure 2—Example Topology. We show how a 2-antenna AP can
precode its signal to a 1-antenna client.

(multimedia) over Remote Desktop, which is increasingly com-
mon in the enterprise. Our results show that OpenRF reduces the
percentage of screen glitches in a VNC Remote Desktop client
by 6×. It also reduces the 90th percentile delay for VNC by 4×.
• Commodity 802.11n cards can perform beamforming to improve

the average SNR at the receiver by 3 dB. Beamforming also leads
to a flatter receiver SNR profile across OFDM bins. These rea-
sons cause the bit-rate adaptation algorithm to jump to the next
rate 80% of the time, thereby enhancing throughput. The cards
can also perform interference nulling and interference alignment
to reduce the average interference-to-noise ratio (INR) at the re-
ceiver by 12 dB and 11 dB respectively. This enables concurrent
transmissions provided the interference is below 10-15 dB.

Contributions: OpenRF is the first system that deploys physical-
layer MIMO techniques (i.e., nulling, alignment, beamforming) on
commodity Wi-Fi cards. OpenRF dynamically applies the right set
of these MIMO techniques to suit any topology or traffic pattern. It
is also the first cross-layer design that is demonstrated using a fully
operational network stack with real applications. As such, it takes
cross-layer design all the way from the physical layer to the appli-
cation layer, and opens up an opportunity for these technologies to
make impact on today’s networks.

2. MIMO PRIMER
In this section, we provide a brief introduction to basic MIMO

interference management techniques. To understand these tech-
niques, it is important to know the following fundamental prop-
erties of MIMO transmissions [16, 35]:

• An n-antenna node receives signals in n-dimensional space. For
example, a 1-antenna client receives a signal at only one antenna;
so it receives signals in one-dimension. Similarly, a client with
two antennas receives a signal on both of its antennas. So, the
received signal is a vector in a 2-D space.
• An n-antenna node transmits signals in n-dimensional space. For

e.g., a 3-antenna AP transmits a 3-D vector.
• n-antenna receivers can decode up to n concurrent signals.
• A transmitter can use precoding to change how its signal is re-

ceived at a particular node. To do so, it multiplies the transmit-
ted signal by a pre-coding matrix P. The pre-coding matrix can
be chosen to null (i.e., cancel) the signal at a particular receiver,
beamform the signal, or align it along some space. Below, we
explain how these three MIMO techniques leverage precoding.

2.1 Interference Nulling
Interference nulling allows a transmitter to completely cancel

(i.e., null) its signal at a receiver. For example, suppose a 2-antenna
AP wants to null its signal x at a 1-antenna receiver as shown in
Fig. 2(a). Say the AP sends x on both of its antennas. Let the chan-
nels from the two transmitting antennas to the receiver’s antenna be
h1 and h2. The receiver obtains the signal h1x + h2x. So, how can
the AP precode its signal so that the received signal is zero?
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Figure 3—Interference Alignment at a 2-Antenna Receiver. The
AP uses interference alignment to rotate the interfering signal i2
along i1, making the two interferers seem as if there were one.

Say, the AP pre-multiplies the signal at its first antenna by a con-
stant p1 and second antenna by another constant p2. The new re-
ceived signal is now h1p1x + h2p2x, which needs to be 0. Clearly,
this can be solved easily, for example, by setting p1 = −h2 and
p2 = h1.1 Thus, the AP can now safely transmit without causing
any interference at this client.

We can generalize nulling for a multi-antenna client by using
a precoding matrix P such that HP = 0, where H is the channel
matrix from transmitter to receiver [16, 11].

2.2 Coherent Beamforming
Coherent beamforming helps an AP maximize its signal at a re-

ceiver, i.e., increase the SNR. Let us revisit the example in Fig. 2,
where this time, the 2-antenna AP wants to beamform its signal at
the 1-antenna receiver. As before, the received signal is h1x + h2x.
So, can the AP further increase the power of the received signal?

Fortunately, the AP can indeed do so by applying precoding once
again, this time so that the signals from the two antennas add up
constructively. In other words, received signal, h1p1x+h2p2x, needs
to be maximized. Since h1p1 and h2p2 are complex numbers, to
maximize their sum we need to choose p1 and p2 to align the two
complex numbers so that they have identical phases. This can be
done by choosing (p1, p2) = (h∗1 , h∗2 ).

In general, a multi-antenna AP can beamform its streams coher-
ently at a single-antenna client using a precoding matrix H∗/||H∗||,
where H∗ is the conjugate transpose of the channel matrix. [23, 35].

2.3 Interference Alignment
Suppose a 2-antenna receiver receives two signals - a desired sig-

nal along~x and an interfering signal along~i1. As mentioned before,
these signals can be represented as vectors in a 2-D space, as in
Fig. 3. Since a 2-antenna receiver can decode two concurrent sig-
nals, it can discard the interfering signal, to obtain its desired signal.
However, if another interferer joins the network, the receiver can no
longer decode, since the 2-D space has a third vector~i2, as in Fig. 3.
How can the transmitter of~i2 avoid interfering at the receiver?

Interestingly, the transmitter of~i2 can leverage interference align-
ment and precode its transmission to rotate the vector~i2 and align
it along the same direction as ~i1. In effect, the receiver now ob-
tains only two vectors, the desired signal along vector ~x, and the
sum of interferences~i1 +~i2 along a different direction, as shown in
Fig. 3. Thus, it can easily decode by treating the unwanted interfer-
ence~i1 +~i2 as one signal from a single antenna, and projecting ~x
orthogonal to the interference.

In general, a multi-antenna AP can align its signals along the
vector space V using a precoding matrix P, such that, V⊥HP = 0,
where (.)⊥ denotes the orthogonal vector space [16, 11].

Note that since all the above techniques leverage MIMO precod-
ing, they can be combined in different ways by a transmitter that
has a sufficient number of antennas.
1One still needs to normalize to ensure the power after pre-coding
sums up to the transmit power budget. For clarity however we ig-
nore normalization, assuming that the transmitter always normal-
izes its signal before transmission.
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Figure 4—OpenRF Flow Table. OpenRF defines flows based on
packet headers, similar to OpenFlow.

3. OPENRF’S DESIGN PRINCIPLES
OpenRF provides a general framework for applying MIMO PHY

techniques in an Enterprise WLAN. It resides at the APs and can
perform interference nulling and coherent beamforming without
modifications to the clients. It can also perform interference align-
ment by patching the client’s driver as explained in §5.3.

OpenRF is compatible with commodity 802.11n cards that im-
plement transmit beamforming, an 802.11n optional feature.2.

OpenRF’s design is based on the realization that cross-layer
interference management techniques can be decoupled into two
classes: coherence techniques and interference techniques. Coher-
ence techniques aim to maximize the signal strength at a receiver,
e.g., coherent beamforming (See §2.2). In contrast, interference
techniques allow APs to transmit additional concurrent streams,
provided these streams do not interfere with existing parallel trans-
missions. Interference techniques include nulling, and alignment
(See §2.1 and §2.3). Interestingly, coherence techniques can be per-
formed completely locally, as they only involve a single AP trans-
mitting to its own clients. In contrast, interference techniques need
APs to synchronize with other APs, so that they do not interfere at
each other’s clients, while they transmit concurrently on the shared
wireless medium. Thus, OpenRF’s first policy is: only interference
techniques need to be coordinated (i.e., scheduled) by the central
controller. This rule reduces coordination complexity.

Second, just like OpenFlow steers a flow’s packets toward a par-
ticular route, OpenRF steers the signal of each flow along a par-
ticular spatial direction. This is done by precoding the signal be-
fore transmission. However, unlike OpenFlow, OpenRF does not
directly assign a precoding vector (or precoding matrix) to each
flow. This is because MIMO APs need to combine transmitting
flows coherently to their clients, along with canceling interference
at other APs’ clients. Fixing the precoding vector for a particular
flow would also fix the set of flows that can be concurrently trans-
mitted with that flow. However, due to traffic burstiness, the set of
flows which need to be combined together changes frequently de-
pending on which flows have pending packets in the queue. Thus,
instead of assigning a precoding vector per flow, OpenRF assigns
to each flow an interference vector and a coherence vector. Now
suppose the APs consider a set of flows for concurrent transmis-
sion depending on which flows currently have pending packets in
the queue. At each AP, OpenRF can now combine, in real time,
the relevant coherence and interference vectors, to produce a pre-
coding vector that enables transmitting the desired flow coherently,
while nulling any interference that may affect other flows. Hence,
OpenRF’s second policy is to perform late binding of interference
and coherence decisions.

In the following section, we explain the above policies and their
implementation in greater detail.

4. OPENRF’S ARCHITECTURE
OpenRF is architecturally similar to SDN in that it separates the

control and data planes, and exposes functions that have tradition-
ally been deeply hidden in the network stack to higher layers. The
data plane is controlled by an open interface that is managed in soft-

2The Transmit Beamforming feature allows OpenRF to set precod-
ing vectors (or matrices) on 802.11n cards, with certain restrictions,
as explained in §5.3.
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Figure 5—Computing the precoding vector. Suppose an AP
needs to beamform its signal to Alice, while nulling interference
at Bob. Then the precoding vector ~p is the projection of coherence
vector ~h∗a onto the plane orthogonal to interference vector ~hb.

ware by a controller. In this section, we describe the architecture of
both the OpenRF Interface and the OpenRF controller.

4.1 OpenRF Interface
The OpenRF Interface operates over a table indexed by flows,

which describes how the AP handles different flows in the net-
work. Flows are identified based on fields in the packet header, such
as destination IP address, port number etc. (Fig. 4). Additionally,
OpenRF maintains for each flow, a coherence vector, which spec-
ifies the direction along which the signal is received coherently at
the client, and an interference vector which specifies the direction
that we need to be orthogonal to in order to avoid interference at
this client.

The concept of an interference vector and a coherence vector
(or more generally an interference matrix and a coherence matrix)
is best explained via an example. Consider the scenario in Fig. 5,
where a 3-antenna AP wishes to beamform its signal to its client,
Alice, while nulling interference at Bob, the client of a different
nearby AP. Let the channels to Alice be ha1, ha2, and ha3, and the
channel to Bob be hb1, hb2, and hb3, as shown in the figure. We can
express these channels as two 3-dimensional vectors, ~ha and ~hb.

Now, any pre-coding vector that the AP computes must satisfy
the following two conditions:

• Interference Condition: To null to Bob, the AP has to pre-code
its signal such that it falls in the pink-colored plane orthogonal
to Bob’s channel vector, as shown in Fig. 5. Specifically, let ~p be
the pre-coding vector that the AP applies to its signal. Then to
null to Bob, we need ~hb ·~p = 0.
• Coherence Condition: The AP also wants to beamform its sig-

nal to Alice. In the absence of the nulling constraint, beamform-
ing requires the AP to align its transmission with Alice’s chan-
nels, i.e., ~p = ~h∗a . However, this pre-coding vector creates in-
terference at Bob as it does not satisfy the nulling condition
~hb · ~p = 0, thereby making concurrent transmissions to Alice
and Bob infeasible. Thus, the AP’s best option is to pick a pre-
coding vector that satisfies the nulling condition but is as close
as possible to ~h∗a . To do so, the AP projects ~h∗a on the plane that
nulls the signal to Bob, as shown in Fig. 5.

In the above example, Bob’s interference vector is his channel
~hb, whereas Alice’s coherence vector is the conjugate transpose of
her channel~h∗a . The AP can keep these vectors in the OpenRF table
along with the entries of Alice and Bob. Whenever it wants to null
to Bob and beamform to Alice, it uses these vectors to compute the
required precoding vector ~p and applies it to the transmitted sig-
nal. The AP may also combine nulling to Bob with beamforming
to a client other than Alice, say, Charlie. To do so, it only needs
to combine Bob’s interference vector with Charlie’s coherence vec-
tor. These decisions can be made in real-time depending on which
clients have packets pending at the AP.

While the above example deals with single-antenna receivers, it
can readily be generalized to typical multi-antenna MIMO systems
that leverage MIMO multiplexing. In the following section, we for-
malize our definitions of the coherence and interference vectors and
the computation of the precoding vector. Note that as we generalize
to multi-antenna MIMO clients, the vectors become matrices.

4.2 Formalizing the Precoding Computation
Suppose an n-antenna AP needs to transmit k independent

MIMO streams Xk×1 to an m-antenna client, where k ≤ m. Let
Hm×n be the channel matrix, where m ≤ n. The AP applies a pre-
coding matrix Pn×k so that the received signal: Y = HPX.

The AP can choose the precoding matrix P to satisfy certain in-
terference and coherence conditions. We define:

• Coherence Matrix: The coherence matrix Ci for flow i iden-
tifies the space along which the signal should be transmitted
to increase the SNR at the client. For coherent beamforming
to a single antenna client, we define Ci = H∗i /||H||, where H
is the channel matrix to the client. More generally, we define
Ci = Eigk(H∗H), where Eigk(M) denotes the k eigen vectors of
M with the largest eigen values.
• Interference Matrix: The interference matrix Ii for flow i identi-

fies the space to which the signal should be orthogonal in order to
avoid interference at the client. For interference nulling Ii = Hi.
For interference alignment where the client is aligned along the
direction (or, more generally, space) specified by the vector (or,
matrix) Vi, Ii = V⊥i Hi.

Note that the above matrices allow for beamforming, and
nulling/alignment to MIMO clients that receive multiple streams.
Computing the Precoding Matrix: Now that we have defined co-
herence and interference matrices, we need to explain how OpenRF
computes the precoding matrix, in real-time, for an arbitrary set of
concurrent flows. Assume that the OpenRF controller (described
in §4.3) has already populated the interference and coherence ma-
trices for a set of flows in the OpenRF table. Suppose the controller
decides that the AP needs to transmit a flow 1, while concurrently
canceling any interference caused to concurrent flows: 2, 3, . . . , n.

Let C1 be the coherence matrix of flow 1 in the OpenRF ta-
ble, and I2, . . . , In be the interference matrices of flows 2, . . . , n.
OpenRF first computes the combined interference matrix I by con-
catenating these interference matrices, i.e. I = [I2 . . . In]

T . The
matrix I denotes the space that the signal should be orthogonal,
to avoid interference at all of flows: 2, . . . , n. Intuitively, OpenRF
now needs to project its coherence space C1, orthogonal to the in-
terference space I. This can be interpreted as a standard geomet-
ric problem, similar to Fig. 5, but generalized to n-dimensional
space. OpenRF computes the solution as the precoding matrix:
P = I⊥(I⊥)∗C1, where I⊥ denotes the null-space of matrix I.

4.3 OpenRF Controller
The OpenRF controller has two components: a central compo-

nent that coordinates all APs, and a local component residing on
each AP that adapts to real-time changes to channels and traffic
patterns. We refer to this local component as the local agent. As
argued in §3, OpenRF’s key design principle is that the central con-
troller manages only interference spaces across APs, and delegates
managing the coherence space to the local component at each AP.

To schedule concurrent transmissions across APs, we divide time
into slots. Having short slots corresponding to the size of a packet
can cause excessive overhead. Hence, OpenRF leverages 802.11n’s
aggregate frames, which combine multiple MAC-layer packets into
a single PHY-layer frame from the perspective of medium access.
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Figure 6—Illustrative Example. In this example, there are two
3-antenna APs: AP-1 and AP-2, and four clients.

This allows us to set the slot size corresponding to the size of an
aggregate frame, which in our system defaults to 5 ms.

The central controller designates some slots for scheduling edge
clients where two or more APs interfere.3 Other slots are scheduled
locally, by the local agent at each AP. This limits coordination over-
head across APs to only these centrally scheduled slots, which we
call the interference slots.

Once the central controller assigns the interference slots, the lo-
cal agents on the APs abide by the following contract: (1) Any flow
that suffers interference from other APs (i.e. flows to edge clients)
can only be transmitted in its own interference slot. (2) Interfering
APs that wish to concurrently transmit during this slot must per-
form the interference management technique recommended by the
central controller, i.e., interference alignment or nulling. The local
agents, however continue to have the flexibility to schedule any flow
locally based on the dynamic traffic patterns, in any slot, provided
the flow does not suffer from interference.

To illustrate the above rules, let us consider the simple example
in Fig. 6. Here, AP-1 has two clients Alice and Bob, AP-2 has two
clients Charlie and Dave. The pale blue circles show the interfer-
ence range of each AP. For simplicity, we assume that all channels
support the same rate and that there are no QoS requirements. Sup-
pose the controller assigns every alternate slot as interference slots
for edge client Charlie. During such a slot AP-1 and AP-2 follow
these policies: (1) AP-1’s contract is to null its signal to Charlie
during all of his interference slots. However AP-1 is free to transmit
concurrently to either Alice or Bob, depending on who has traffic.
(2) AP-2’s contract is that it can transmit to Charlie concurrently
to AP-1 only in its designated slots (We explain how to selectively
enable concurrent transmissions in 802.11 in §5). However, AP-2
is free to transmit to David, in either slot, concurrently with AP-1.

In the following paragraphs, we explain how the central con-
troller and local agent function.

Local Agent. The goal of the local agent is to dynamically sched-
ule which flow an AP must transmit to during each time slot. The
local agent takes as input the list of interference slots, and the QoS
requirements of different flows. The controller then employs the
following algorithm described in Alg. 1, inspired by deficit round
robin scheduling. At a high level the algorithm maintains a credit
counter, ci, for each flow i. In general, the credit counter of a flow
is large, if it has not been scheduled for an extended period. Now at
any time slot, the local agent picks the flow f whose credit counter is
the highest. It then measures the number of bytes b it could send for
this flow in this slot. Finally, it updates the credit counters, by reduc-
ing the credit of this flow, based on b, and redistributing this equally

3Edge clients can be identified by checking if the SNR based on the
channel matrices of APs is above a nominal threshold.

1 Pseudo-code for the Local Agent Algorithm
1: function LOCALAGENT(t, qos, slots)
2: . t: Slot, qos: QoS needs, slots: Interference Slots
3: if t ∈ slots then . t an interference slot
4: f = Flow for slot t (if flow has packets to send)
5: else f = arg[maxi(di)] . f : Flow with most deficit
6: end if
7: df = df − b . df : deficit, b: no. of bytes sent
8: bf = bf + b . bf : no. of bytes sent so far by f
9: for each flow i do

10: . ei: Expected no. of bytes for QoS or BE flows
11: ei = qosi ∗ t, if QoS (or) avgk∈BE(bk), if BE
12: wi = ei/bi . wi: weight for flow i
13: di = di + b ∗ wi/

∑
k wk . Update deficits

14: end for
15: return f
16: end function

among all other flows. In effect, this ensures that the medium is
shared fairly between all flows.

However, to support OpenRF, we need the following additional
modifications: First, consider an interference slot, where other APs
null interference for flow f , belonging to this AP. In such a slot, the
AP always picks flow f , if f has pending packets in the queue.

Second, the local agent enforces two kind of QoS requirements:
a proportional allocation of throughput, and fixed reservation of
throughput. These requirements are configured by the network
manager, for flows identified by their packet headers. Note that we
do not consider delays in our current system. Proportional alloca-
tion requires the flows of an AP to achieve throughputs proportional
to some set of weights: {wi, for all flows i}. This can naturally be
incorporated into the local agent’s algorithm. Specifically, instead
of redistributing credit equally between flows, we redistribute it
proportionally based on weights {wi} (Alg. 1, Line 13). This en-
sures that flows are allocated precisely according to these weights.

Now that we know how to allocate throughput proportionally,
how do we enforce fixed reservations? In this scenario, we have
two kinds of flows: Quality of Service (QoS) flows, which have
fixed throughput requirements, and Best Effort (BE) flows, must
have equal (or more generally, proportional) throughput between
them to ensure fairness. Interestingly, the local agent can translate
the problem of fixed reservations to proportional allocation with
dynamic weights. In particular, the agent computes ei, the expected
number of bytes that it hopes to send during time span t for a flow.
For QoS flows, ei is simply qosi ∗ t, where qosi is the throughput
requirement. In contrast, all BE flows must achieve equal through-
put in this time, so ei is the mean of the throughput achieved for
all BE flows during time span t. (Alg. 1, Line 11) The agent now
applies proportional allocation by resetting the weights wi, in every
time slot, to ei/bi, where bi is the number of bytes sent so far for
flow i. In effect, this biases the weights to ensure that bi is as close
as possible to ei, hence satisfying the QoS requirements.

Central Controller. The central controller assigns interference
slots that serve flows to edge clients in the network. The controller
takes as input the network state, i.e. channel state information, the
list of clients and their flows. Similar to the local agent above, the
central controller uses credit counters to decide the number and list
of interference slots, while accounting for QoS, BE or proportional
throughput requirements for different flows in the network.

The controller applies the following heuristic algorithm for each
AP i in the network: First, it uses credit counters, similar to the lo-
cal agents, to pick flow fi for AP i. After choosing fi, the controller
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Figure 7—Interference Nulling. Here, AP-1 and AP-2 transmit
concurrently to their respective clients: client-1, and client-2, by
nulling interference at each other’s clients.

iterates over all other APs (besides AP i), and checks if any of these
APs may potentially interfere with fi. For such APs, the controller
decides how they should manage interference so that they can con-
currently transmit with fi. In particular, it prescribes interference
nulling if fi is to a single-antenna client, and interference alignment,
otherwise.4 Next, these APs are informed that the present slot is an
interference slot allotted to fi.

At this point, the controller must update the credit counters based
on the throughput for the set of flows{fi}. But recall that unlike the
local agent, the central controller cannot obtain the number of bytes
that have been sent in a slot. In other words, the controller needs to
determine the throughput that each flow will achieve. Fortunately,
this can be done fairly accurately by calculating the effective chan-
nel of each client, which is the product of the client’s channel and
the AP’s precoding matrix, and then estimate the throughput using
the ESNR algorithm [13].

Finally, the Central controller, unlike the local agent, can lever-
age its global view of the network to ascertain whether a flow’s
fixed throughput requirement can be satisfied. Whenever a new QoS
flow joins the network, the controller performs the following ad-
mission control algorithm: It runs the above central controller al-
gorithm with the new throughput requirement factored in. It then
admits this flow as a QoS flow only if the AP achieves the requisite
throughput requirement of this flow, at the end of the algorithm.

5. INTEGRATION WITH 802.11 PROTOCOL
To implement OpenRF on commodity Wi-Fi cards, it must be

integrated with the 802.11 protocol. Unfortunately, the 802.11 pro-
tocol was not designed with MIMO interference management tech-
niques in mind. This causes subtle interactions between PHY-layer
interference management and 802.11’s MAC, as described below.

5.1 Ensuring Reliability
End to end reliability is essential for the correct operation of TCP

and most applications. WLANs achieve reliability using 802.11’s
carrier sense, acknowledgments and retransmissions, which to-
gether provide an abstraction of a reliable communication channel
to higher layers of the network stack. Unfortunately, these three re-
liability mechanisms do not lend themselves naturally to concurrent
transmissions in the same interference region, which are essential
for most PHY-aware techniques to achieve throughput gains.

(a) Carrier Sense: Consider the example in Fig. 7, where we
have two APs, each transmitting streams to their own clients, while
nulling interference at each other’s clients. If carrier sense is dis-
abled on the two APs, OpenRF will enable these APs to transmit
concurrently in the same interference region and correctly deliver
packets to their own clients (as described in the previous section).
However, in the presence of carrier sense, one of the APs will begin
transmitting before the other, causing the other AP to carrier sense

4Sometimes, the AP may not have enough antennas to simultane-
ously null/align to multiple flows. In such cases, this AP is not per-
mitted to transmit to any of its clients during this interference slot.
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Figure 8—Collision of MAC-Layer ACKs. In Case (a), packets
are of equal length, causing ACKs to repeatedly collide with each
other. In Case (b), packets are of unequal lengths causing ACKs
repeatedly to collide with packets. In contrast, OpenRF ensures that
the system recovers from any MAC-layer ACK collisions.

the signal and abstain from concurrently transmitting. Thus, to pro-
vide concurrent transmissions at the physical layer, we need to
make the two APs carrier sense only when appropriate. Of course,
one option is to deactivate carrier sense altogether; but that would
lead to severe collisions with uplink traffic.

To ensure that the two APs in Fig 7 transmit concurrently, de-
spite carrier sense, OpenRF synchronizes their packets so that they
start precisely at the same point and therefore effectively do not car-
rier sense each other. But how do we ensure that the two APs start
exactly at the same time? Recall that 802.11 nodes decide at what
time to transmit as follows: If the node senses the medium as idle,
it picks a random slot between 0 and CWmin, and transmits starting
from that slot. Hence, if we convince two nodes to pick exactly the
same slot, they will never sense each other and will transmit con-
currently starting from that slot. One way to achieve this is to set
CWmin to zero, causing both APs to always transmit concurrently at
the 0-slot. However, this alone is not enough, as always picking the
zero slot gives the APs unfair access to the medium compared to
other nodes in the network.

To recover fair medium access, we leverage the AIFS parame-
ter in 802.11e/n standards. Instead of applying the same DIFS pe-
riod to all types of traffic, 802.11e/n allows different traffic classes
to replace the standard DIFS waiting period by a different waiting
time referred to as the arbitrary inter frame spacing (AIFS). This
enables different classes of traffic to have varying levels of prior-
ity. In particular, we leverage AIFS as follows: Whenever two APs
have to transmit concurrently, we set their AIFS period to a fixed
value of DIFS + CWdef

min/2, where CWdef
min is the default value for

CWmin. In addition, we set CWmin to zero, so that both APs always
send concurrently, precisely after AIFS. Together, these two mech-
anisms ensure that the two APs transmit concurrently in slot zero,
but as their AIFS is longer than DIFS, it will look to other nodes as
if they picked the middle slot CWdef

min/2, which is precisely what we
need for average fairness. Note that APs can send flows that are not



meant to be transmitted concurrently with other APs, independently
using standard AIFS and contention windows.

(b) MAC ACKs and Transmission: The above solution allows us
to synchronize the two access points and make them transmit their
data packets concurrently. However, since 802.11’s acknowledg-
ments are transmitted immediately after a packet, they will invari-
ably cause collisions. Specifically there are two scenarios as shown
in Fig. 8: (1) The concurrent packets span the same length on the
wireless medium, in which case, their ACKs will collide as shown
in Fig. 8(a). (2) The concurrent packets span different lengths on the
medium, which causes ACKs to collide with data packets as shown
in Fig. 8(b). In either case, APs do not receive acknowledgments
for their data packets, and therefore they will end up retransmitting
the packets again and again, eliminating any potential gain.

There are a variety of solutions to mitigate this, which are not
compatible with the 802.11 standard. For example, one may pro-
pose that since the APs have multiple antennas, they may jointly
decode the colliding ACKs. Unfortunately, joint decoding is not
possible with the current 802.11 standard. Alternatively, one may
propose applying interference nulling to ACKs on the uplink, sim-
ilar to the downlink data packets. However, coordination between
disparate clients is relatively difficult compared to the APs, since
the clients are not connected to a wired backend.

To address the above problem, we leverage 802.11n block aggre-
gation. Specifically, block aggregation allows you to bond multi-
ple MAC-layer packets (MPDUs) to the same destination that span
equal time durations of up to 5 ms on the medium as shown in
Fig. 8(c). Note that packets may have different lengths and may be
sent at different rates leading to blocks of sizes below 5 ms. So,
we ensure blocks span precisely 5 ms by suffixing dummy MP-
DUs at the end of the block if necessary. Using block aggrega-
tion greatly reduces the number of ACKs in the system, since the
client issues only a single block acknowledgment for all MPDUs
in a block. However, the two block ACKs of concurrently trans-
mitted blocks will continue to collide. Fortunately, when a block
ACK is lost, the access point does not retransmit the entire block
once again. Instead, the 802.11 standard specifies that the AP is-
sues a short block acknowledgment request for the block ACK[1].
By sending this block acknowledgment request using standard best
effort with default AIFS and contention windows, OpenRF can en-
sure that their is no concurrency of the block requests, therefore the
block acknowledgments do not collide as shown in Fig. 8(c).

In summary, the above mechanisms ensures that packets that are
transmitted concurrently are still acknowledged correctly, provid-
ing the expected level of reliability to TCP and higher-layer appli-
cations. Furthermore, the only overhead we incur to ensure reliabil-
ity is the loss of up to one block ACK at most every 5 ms, which is
relatively low, compared to the gains from concurrency.

5.2 Working with Unmodified Clients
PHY-aware techniques such as interference nulling, interference

alignment and beamforming, all require knowledge of the chan-
nels from APs to their clients. To this end, one possible approach
is to require clients to measure their channels and provide this in-
formation as feedback to the APs. However, this approach has two
problems: First, it incurs high overhead. Second, many clients may
not have the capability to measure these channels in the first place.
For example, a single antenna client cannot measure the channels
simultaneously from a 2-antenna AP. One might wonder if it suf-
fices for the AP to transmit two individual packets: the first packet
on its first antenna and the second on its second antenna. While this
would allow the client to measure the channel from each transmit
antenna separately, such measurements will be separated by at least
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Figure 9—Interference Alignment. In this example, we have
three AP-client pairs. AP-1 and AP-3 align their interfering signal
to enable the 2-antenna client to decode AP-2’s signal.
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Figure 10—Enabling Alignment for Today’s clients. OpenRF
implements alignment for the client by aligning all interfering sig-
nals: i1 and i2, along antenna 1. The client disables antenna 1 to
decode desired signal x on antenna 2.

hundreds of microseconds. However channels required for perform-
ing nulling or beamforming must be measured at nearly the same
time, and can at most be separated by a few OFDM symbols [23].5

So how can we perform nulling, alignment or beamforming at APs,
without requiring clients to send their channel state information?

To address this problem we use the principle of channel reci-
procity[11]. Reciprocity states that the channel in the forward di-
rection is the same as the channel in the reverse direction, up to
some calibration constant. In effect, APs can now use packets sent
from the clients to measure the reverse channel, and then use those
measurements to infer the forward channel needed for interference
management. However, the AP still needs to know the calibration
constant to derive the forward channel from the reverse channel.

Fortunately, this calibration constant only depends on the trans-
mitter. It can be calibrated a priori by the having each AP measure
the forward and reverse channels to any other AP and thereby infer
the calibration constant.6

5.3 Overcoming Limitations of the 802.11n standard
Interference Alignment with today’s MIMO clients. Imple-

menting interference alignment with today’s 802.11 nodes is quite
challenging. In particular, consider the example in Fig. 9, where
we have a 2-antenna client receiving its desired signal from AP-1.
Two other access points, AP-2 and AP-3 align their transmissions
together at this client to collapse their interfering signals into one
stream. In principle, the client in Fig. 9 can decode his desired sig-
nal by projecting the signal it received from AP-1 orthogonal to
the common direction of the two interferers (See Fig. 3). This is
the standard approach for decoding multiple streams, and, in par-
ticular, interference alignment. The client should now ignore the
interfering signal, since it does not need it, and in fact, cannot de-
code it. This mechanism has been used in several past designs im-
plementing alignment on software radios [11, 16]. Unfortunately,
current 802.11 standards enforce fate sharing between the differ-
ent MIMO streams received by a MIMO receiver. Specifically, the
5If not, the channels would be severely distorted by an accumulated
phase difference owing to the frequency offset between the clocks
of the AP and client, as well as phase noise [23].
6The reason the calibration constant depends only on the transmit-
ter, is that all interference management techniques rely only on the
ratio of the channels from the transmit antennas, and not their ab-
solute values [10]. As a result constant factors that depend only on
the receivers are canceled out.



client in Fig. 9 is not designed to ignore the interfering stream and
simply accept the desired stream that it was able to decode correctly
(802.11 applies a single convolutional code across all streams. So,
errors in one stream percolate to all streams). So how can OpenRF
support interference alignment despite this major limitation?

Our solution to this challenge is counter-intuitive. The only way
to implement interference alignment on off-the-shelf MIMO nodes
is to convince the receiver that one of his antennas is not functional!
Specifically, the driver can issue a command to deactivate one of the
client’s antennas. Suppose we now align the two interfering streams
along antenna 1, by setting the direction of alignment Vi (see §4.2)
as the unit vector along the axis corresponding to antenna 1 . We
then ask the client to deactivate antenna 1 (Fig. 10).7 Then, effec-
tively, the client will not see the interfering stream altogether, and
it will only observe its desired stream, which can now be decoded.
This effectively tricks the client into performing interference align-
ment by ignoring the fate sharing between MIMO streams. There-
fore, our approach allows AP-2 to transmit to its own client, even
while AP-1 and AP-3 are concurrently transmitting to their own
clients, thereby increasing concurrency in the network.

It has to be Unitary! Past literature, as well as our discussions so
far, assumes that we can set the precoding vectors to arbitrary val-
ues according to the desired PHY-technique. However, the 802.11n
compressed transmit beamforming feature requires the matrix of
precoding vectors to be unitary. For example, an AP with 3 anten-
nas, applies 3 precoding vectors which forms a 3×3 matrix. This
matrix has to be unitary. To ensure this, after computing precoding
vectors, OpenRF uses geometric transforms to express the ultimate
precoding matrix, used by the device, as a unitary matrix.

6. IMPLEMENTATION
We implemented OpenRF by modifying the iwlwifi driver for In-

tel Wi-Fi cards on Ubuntu 10.04 LTS. We built our solution over the
University of Washington’s 802.11 CSI tool [12]. Our APs also use
the transmit beamforming feature of the Intel 5300 Wi-Fi cards.8

To support the OpenRF Interface, we made the following mod-
ifications to the driver: First, we implemented the OpenRF table
(Sec. §4.1) as a debugfs file that interfaces between user and kernel
modes. Second, OpenRF uses the 802.11 CSI tool to calculate the
reciprocal channels from the clients, which are used to maintain the
coherence and interference spaces in the OpenRF table for various
flows at this AP. Finally, we employ the transmit beamforming fea-
ture to set precoding vectors for various flows in real-time, using
the coherence and interference spaces as in §4.2.

To support the OpenRF Controller at each AP, we first employ
block aggregation to implement time slots spanning 5 ms. We use
NTP over the wired Ethernet backbone to synchronize the block
aggregation slots across APs in the network. We observed that this
was sufficient to synchronize blocks spanning 5 ms each, within
tens of microseconds. We intercept packets from the higher lay-
ers into per-flow queues at the driver and apply the local controller
algorithm as described in §4.3. Our controller and scheduler algo-
rithms are implemented using high resolution timers to minimize
waste of airtime. The central controller is implemented on a Linux
workstation, and coordinates APs in the network over the Ethernet
backbone using the algorithm described in §4.3.

Finally, our implementation fully complies with 802.11n and
handles concurrent transmissions, carrier sense, and ACKs as in §5.

7More generally, for better performance, the client dynamically de-
activates the antenna with poorest channel to the desired AP.
8While we chose to implement OpenRF on Intel cards, OpenRF’s
design is compatible with any 802.11n card that supports the trans-
mit beamforming feature[1].

Figure 11—Floor map for our testbed. Our 20-node testbed in-
cludes 6 APs (blue squares) and 14 clients (red circles).

We deployed OpenRF on a network of 20 nodes, each containing
an Intel Wireless-N series card connected to a PC or laptop. Our
network has six 3-antenna APs, spread out on a single floor of a
large building as shown in Fig. 11. Each AP is a Linux PC run-
ning hostapd, and implementing our patched iwlwifi driver. We de-
ploy 14 clients, including seven single-antenna, five 2-antenna and
two 3-antenna wireless nodes. We randomize the locations of the
clients on the floor across different experiments (a candidate set of
client locations is shown in Fig. 11). All APs in the network share
the same wireless channel, potentially causing interference at some
clients, that are at the edge of their AP’s communication range.

7. RESULTS
We compare OpenRF in various settings with a standard 802.11n

baseline that uses block-aggregation but does not perform interfer-
ence nulling, coherent beamforming or interference alignment.

7.1 PHY-aware techniques on Commodity Cards
First, we evaluate how effectively commodity Wi-Fi cards can

perform common PHY-aware techniques, like, interference nulling,
coherent beamforming and interference alignment. We evaluate
how these techniques impact TCP flows generated using iperf [30]
in our 20-node network in Fig. 11. We use a mix of both long and
short lived TCP flows. Each client has one long lived flow. Addi-
tionally, short flows are generated according to a Poisson arrival
process, with mean inter-arrival time of 1s, and have a Pareto file
size with mean of 125KB and shape parameter of 1.5 [21, 7].

We use the OpenRF Controller to identify scenarios correspond-
ing to different MIMO interference management techniques, ap-
plied in this network. We repeat the experiment across randomly
chosen client locations. In each case, we compare our system’s per-
formance with 802.11, by replaying identical traffic patterns.

Experiment 1: (Interference Nulling) We consider scenarios re-
ported by the controller where two single-antenna clients obtain
signals from two APs as shown in Fig. 7. To mitigate interference,
the controller applies interference nulling on the APs, so that they
null any unwanted interference at neighboring clients. We mea-
sure the interference-to-noise ratio (INR) at each client from its
unwanted AP, with and without OpenRF’s nulling, across experi-
ments. We also measure the total throughput of the TCP flows per
client, with OpenRF’s interference nulling and standard 802.11.

Results 1: The plot in Fig. 12(a) shows that the INR reduction from
Interference Nulling is an average of 12 dB. This is a substantial
reduction in INR, and it is sufficient for enabling concurrent trans-
missions in common wireless networks. This is because the opera-
tional SNR of 802.11 is in the range of 5 - 25 dB [23]. Furthermore,
clients that experience interference are often near the boundaries of
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(a) Interference Nulling (b) Coherent Beamforming (c) Interference Alignment
Figure 12—MIMO Interference techniques. We plot the SNR or INR of the client and CDF of total throughput for TCP flows with and
without (a) Interference Nulling. (b) Coherent Beamforming. (c) Interference Alignment.

the communication range of two Access Points. Such clients receive
low SNR from their interfering APs, which still severely disrupts
signals from their own AP. In fact, our results in Fig. 12(a), demon-
strate that performing Interference nulling for such clients leads to
a considerable gain in total throughput of TCP flows per client by a
factor of 1.7×.

One might wonder why the reduction in INR in commodity
cards using Interference nulling is below that of typical software
radios [16, 11]. This is because, the channel state information re-
ported by 802.11 is only provided for 30 OFDM sub-carriers, and
each 3 × 3 transmit beamforming matrix is allotted only 24 bits
[1]. While these settings reduce the overhead from explicit feed-
back, they also limit the INR reduction possible. However, as shown
above, this reduction suffices to enable big gains for real WLANs.

Experiment 2: (Coherent Beamforming) In this experiment, we
consider scenarios where the controller performs coherent beam-
forming from an AP to a single-antenna client. For each set of client
locations, we measure the increase in SNR at the client, with 802.11
and OpenRF’s beamforming. We also measure the total throughput
of TCP flows to this client with OpenRF and standard 802.11.

Results 2: The plot in Fig. 12(b) shows the SNR from AP to client,
with and without coherent beamforming. We observe that coherent
beamforming provides a mean increase of 3 dB in the SNR of the
desired signal. This is very significant, since we observed this was
sufficient to enable 802.11’s rate adaptation algorithm[13] to adapt
to a higher rate compared to standard 802.11, under identical cir-
cumstances, in 80% of our experiments. In fact, our results for TCP
flows, shown in Fig. 12(b) demonstrate a mean gain of 1.4× in the
throughput of OpenRF’s beamforming, compared to 802.11.

Besides the gain in SNR, the gain in throughput is facilitated
by another interesting phenomenon. Quite often, some OFDM sub-
carriers in the 802.11 channel profile of a single antenna experience
low SNR due to fading. However, coherent beamforming from all
three transmit antennas across sub-carriers ensures that fading of
any single OFDM bin is extremely unlikely. Thus, channel pro-
files using diversity, are significantly more flat, when compared to
standard 802.11. This is especially beneficial, since 802.11 uses the
same modulation and coding scheme across OFDM bins.

Experiment 3: (Interference Alignment) In this experiment, we
consider scenarios reported by the controller where a 2-antenna

client is receiving its desired signal from its AP. However, the client
also receives undesired interference from two other 3-antenna APs
(Fig. 9). To mitigate this, we perform interference alignment, so
that the two interfering APs align their signals along one of the
client’s antennas. This ensures that any residual interference on the
client’s other antenna is minimized. The client now decodes its de-
sired signal, interference-free, from its other antenna (See §5.3).

For each client, we then measure the total INR received from
both antennas, as well as how much residual INR leaked into the
second antenna meant for the desired signal. We also evaluate the
gain in the total throughput of the concurrent TCP flows made pos-
sible due to OpenRF’s alignment, compared to standard 802.11.

Results 3: Fig. 12(c) plots the residual INR leaking into the direc-
tion of the desired signal, against the total INR. Our results show
that the residual INR is 11 dB below the total INR. This is a sig-
nificant reduction, as clients receiving signals at the boundary of
three APs are likely to obtain low INRs from the interfering APs.
Yet, these INRs are still comparable to the SNR of the desired sig-
nal. In fact, the total throughput of TCP flows for the client under
OpenRF’s Interference Alignment experiences a 1.5× gain com-
pared to standard 802.11.

Interestingly, OpenRF’s controller algorithm does not apply In-
terference Alignment for multi-antenna clients in all scenarios re-
sembling Fig. 9. In some cases, the controller may choose not to ap-
ply alignment, as the channel matrix from an interfering AP to the
client was ill-conditioned. In fact, for any MIMO system to provide
multiplexing gains, it is imperative that the channel matrix is well-
conditioned [35]. This constraint naturally extends to interference
alignment. Specifically, Fig. 13 plots the ratio of total and residual
INR for different condition numbers of the channel. Note that when
the log of the condition number exceeds 1.2, the total and residual
INRs are nearly equal, providing virtually no gain. As OpenRF’s
controller has channel state information, it accounts for this by ap-
plying alignment only when channel matrices are well-conditioned,
i.e. the log of the condition numbers are below 0.6.

7.2 Application performance
In this experiment, we evaluate the impact of OpenRF on appli-

cation performance. Specifically, we consider the problem of ac-
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Figure 13—Effect of Channel on Interference Alignment. The
gain of interference alignment is highly dependent on the condition
number of the channel matrix. OpenRF only employs interference
alignment when the log of the condition number is below 0.6.

cessing rich multimedia applications over remote desktop, which is
increasingly common in the enterprise.

Experiment. Once again, we consider scenarios reported by the
controller where two single-antenna clients obtain signals from two
APs as shown in Fig. 7. In this experiment, our clients run a re-
mote desktop session over their wireless links, using VNC [15], a
commonly used open-source platform for remote desktop. In par-
ticular we play a 1080p HD-video over remote desktop from the
remote AP. We implement the VNC server on the access points to
eliminate any potential delays or loss of throughput over the wired
link. Our experiment proceeds as follows: We start a VNC session
from client-1 to AP-1 at t = 0. We then start a parallel VNC ses-
sion from client-2 to AP-2 at t = 30 seconds, and gather traces
for both sessions until t = 60 seconds. We repeat this experiment
under identical conditions for 802.11 and OpenRF. We measure the
following quantities:

• Updates per second: The VNC protocol works by clients request-
ing updates for a certain number of pixels for a frame. The server
responds with any changes to these pixels. In our experiment, we
play a clip of Psy’s Gangnam style, a rich and dynamic HD-video
requiring frequent updates. We note that updates at a frequency
of 15-20 per second are sufficient to avoid perceivable glitches.
• Response delay: Measures the mean delay between a request and

its corresponding response. If the response time is high (over 200
ms), the video has visible outages.

Results. Fig. 14 plots the traces for the two clients for both
OpenRF and 802.11. First, we notice that with 802.11, the VNC
flow ceases to provide a comfortable remote desktop experience
once the two APs transmit concurrently. In particular, due to heavy
contention between the two large VNC flows, we observe that the
number of updates per second, varies dramatically in the range of
2-22 updates per second for each flow, with a mean of 12.2. This
means that the user experiences several glitches in the video. More
importantly, we observe on several occasions that the response de-
lay is over 200 ms, with the 90th percentile response delay being
270 ms. Thus, the user experiences frequent and visible outages in
the remote desktop application.

In contrast, OpenRF provides updates for both clients in the
range of 14-22 updates per second, with a mean of 17.6 for the
clients, even when they are transmitting concurrently. This is be-
cause OpenRF benefits from PHY-aware cross-layer techniques
which enable concurrent transmissions and therefore eliminate the
need for contention for medium-sharing between the access points.
As a consequence, OpenRF enhances user experience by ensuring
fewer glitches9 in the video by a factor of 6×, compared to standard
9We quantify glitches based on the number of times there were
fewer than a fixed threshold of 14 updates per second.
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Figure 15—Reservation with VNC. Plots the mean and stan-
dard deviation of the following quantities, for OpenRF and 802.11,
across number of concurrent flows: (a) Throughput of VNC flow
and total network throughput (b) Response Delay of the VNC flow.

802.11. In addition, the 90th percentile delay of OpenRF is 67 ms,
which is well below the required 200 ms, and is 4× lower than that
of standard 802.11.

7.3 Reservation
We study how OpenRF’s reservation policy enhances

application-level quality of experience.
Experiment. We consider scenarios reported by the OpenRF

controller where a single-antenna client is at the edge of the com-
munication range of the two APs, and therefore requires interfer-
ence nulling from one of the APs. We reserve a throughput of 17
Mbps for a large VNC flow destined to this client from its APs.
We then begin transmitting concurrent long-lived TCP flows, from
either AP to up to five other clients in the network and report the
VNC performance as a function of the number of concurrent flows.

Results. The plot in Fig. 15(a) shows the throughput of the VNC
flows, as well as the total network throughput, across the number
of concurrent flows for both 802.11 and OpenRF. We observe that
OpenRF reserves throughput at a mean value of 17.2 Mbps for
the VNC flow, as required by the flow. More importantly, it does
this while continuing to provide the same gains in total network
throughput by exploiting PHY-aware cross layer techniques to en-
able concurrent transmissions of flows between the two APs.

In contrast, with 802.11, the performance of the VNC flow de-
cays with an increasing number of contending flows. Furthermore,
the network throughput is lower, as the APs do not manage inter-
ference, and therefore must share the medium between them.

In addition, Fig. 15(b) depicts the delay of the VNC flows,
with 802.11 and OpenRF. As expected, OpenRF maintains the re-
quired user quality of experience by keeping VNC response delays
at a low mean of 63 ms, despite concurrent transmissions, while
with 802.11, the delays progressively deteriorate with an increas-
ing number of concurrent flows.
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Figure 14—Performance of Video over Remote Desktop. Trace for 802.11 and OpenRF of: Column (1) - number of updates per second;
Column (2) - response time(ms); Column (3) - snapshot of the HD video at the same frame.

7.4 Large scale measurement
Finally, we study how OpenRF performs under dynamic traffic

patterns, dynamic channels, flow arrivals and departures for the full
20-node network.

Experiment. We place our AP and client nodes in randomly
chosen locations (Fig. 11). Our clients are a combination of seven
single-antenna, five 2-antenna and two 3-antenna nodes. We con-
duct our experiments with a variety of TCP and UDP best effort
flows generated using iperf. In particular, our network allows a
combination of TCP (≈ 60 %) and UDP (≈ 20 %) flows as well
as uplink TCP and UDP traffic (≈ 20 %).10 UDP flows are long
lived flows. TCP flows are generated using a mix of both long and
short lived TCP flows. Each client has one long lived flow. Addi-
tionally, short flows are generated according to a Poisson arrival
process, with mean inter-arrival time of 1s, and have a Pareto file
size with mean of 125KB and shape parameter of 1.5. We assign
TCP flows between uplink and downlink, according to the desired
traffic ratios. We compare our system with standard 802.11 by re-
playing identical traffic patterns.

Results. Figure 16 plots the total throughput of all TCP and
UDP flows per client, for 802.11 and OpenRF. In particular, we ob-
tain a mean gain of 1.6× for all TCP flows and 1.7× for all UDP
flows in the network. More importantly, we note that every client
in our system achieves higher throughput on average, compared to
802.11. In fact, our results demonstrate that the OpenRF controller
is truly self-configuring and correctly employs the right combina-
tion of PHY-aware techniques to suit dynamic network topologies
and traffic patterns in real-time.

8. RELATED WORK
Related work falls into three categories:

Cross-Layer Designs: OpenRF is related to past work on the cross-
layer wireless designs [32, 31, 22], particularly to systems that
perform MIMO interference management, e.g., Interference Align-
ment and Cancellation [11], Beamforming [2], SAM [28], and oth-
ers [23, 10, 16, 6]. However, these systems use techniques that fo-
cus on specific topologies or traffic patterns. In contrast, OpenRF

10These ratios are based on the traffic mix on our local network.
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Figure 16—Performance. Plots the mean and standard deviation
of throughput of TCP and UDP flows for all clients in the network

is a general architecture that applies the right set of MIMO tech-
niques to any topology or traffic pattern. Furthermore, unlike past
work implemented on software radios, OpenRF leverages a modi-
fied 802.11n MAC, which employs carrier sense over interference
and coherence slots to support MIMO techniques in today’s wire-
less LANs. Thus, OpenRF tackles new challenges such as interfer-
ence management in the presence of bursty TCP traffic, coopera-
tive MIMO techniques across APs in an enterprise, compliance and
integration with 802.11 standards, and implementation using com-
modity Wi-Fi cards.



Software Defined Networks: Our work is inspired by the large
body of work designing software defined networks for wired LANs,
including OpenFlow [18], and Ethane [4]. While we borrow the
design principle of separating the data and control plane, unlike
OpenFlow which remains at Layer-2, OpenRF provides MIMO in-
terference management techniques that impact the physical layer.
Such techniques cannot be built simply using OpenFlow.

Recently, there have been several proposals bringing software
defined networking to wireless LANs. For e.g., OpenRoads [33],
OpenWiFi [14] and Odin [27] abstract the higher layers of the net-
work stack to provide applications such as seamless mobility, load
balancing, etc. Our work is complementary to this work, and fur-
ther enhances the control plane through MIMO interference man-
agement techniques.

Perhaps the closest related work to our system is OpenRa-
dio[3], which provides a programmable data plane for wireless base
stations supporting multiple technologies such as LTE, WiFi, or
WiMAX. OpenRadio deals purely with managing the data plane on
a single wireless device, by re-using physical layer blocks to imple-
ment different technologies. Our system complements OpenRadio
by coordinating multiple wireless APs in a network to manage in-
terference from the control plane.

Enterprise WLAN Architectures: DenseAP [19], Dyson [20],
CENTAUR [25], and DIRAC [34] have proposed architectures to
better manage enterprise wireless LANs. OpenRF complements
this work by adding new MIMO cross-layer techniques to the tool-
box available for managing enterprise WLANs.

Recent systems have proposed improving network management
by budgeting frequency channels [24, 5], time [9], or leveraging
antenna arrays [17]. In contrast, our system enables multiplexing
shared spectrum across interfering APs through MIMO interfer-
ence nulling and alignment. This complements the above schemes,
enabling more efficient use of spectrum per channel. In addi-
tion, OpenRF can accommodate networks moving towards channel
bonding [8] leading to larger chunks of channels shared across APs.

Finally, Trinity [26] proposes profiling users based on mobility
and channel coherence for enabling distributed MIMO and diver-
sity. However, unlike OpenRF, it uses custom hardware (WARP
boards) and does not study how these PHY layer techniques interact
with real-life traffic patterns and application-layer requirements.

9. CONCLUSION
This paper introduces OpenRF, the first system that enables the

deployment of physical-layer MIMO techniques on commodity
Wi-Fi cards. It is also the first cross-layer design that is demon-
strated using a fully operational network stack with real appli-
cations. While our current implementation of OpenRF demon-
strates interference nulling, interference alignment and beamform-
ing, we believe OpenRF can be extended to support other PHY-
aware techniques such as multi-user MIMO and frequency diversity
schemes [29], when future wireless cards support them.
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