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ABSTRACT
This paper builds a Near-field Communication (NFC) based

localization system that allows ordinary surfaces to locate

surrounding objects with high accuracy in the near-field.

While there is rich prior work on device-free localization

using far-field wireless technologies, the near-field is less

explored. Prior work in this space operates at extremely

small ranges (a few centimeters), leading to designs that

sense close proximity rather than location.

We propose TextileSense, a near-field beamforming sys-

tem which can track everyday objects made of conductive

materials (e.g., a human hand) even if they are a few tens of

centimeters away.We usemultiple flexible NFC coil antennas

embedded in ordinary and irregularly shaped surfaces we

interact with in smart environments – furniture, carpets, etc.

We design and fabricate specialized textile coils woven into

the fabric of the furniture and easily hidden by acrylic paint.

We then develop a near-field blind beamforming algorithm to

efficiently detect surrounding objects, and use a data-driven

approach to further infer their location. A detailed experi-

mental evaluation of TextileSense shows an average accuracy

of 3.5 𝑐𝑚 in tracking the location of objects of interest within

a few tens of centimeters from the furniture.

CCS CONCEPTS
•Networks→ Network services; Sensor networks; •Human-
centered computing → Ubiquitous and mobile com-
puting design and evaluation methods.
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1 INTRODUCTION
This paper seeks to build an NFC MIMO beamforming sys-

tem that can accurately localize objects, with or without NFC

capability in the near-field. While there has been rich prior

work on device and device-free localization in the far-field,

for instance, using technologies such as Bluetooth [8], mm-

wave [24], ultrasound [21], RFID [47] and visible light [49],

much less exploration exists in the near-field. However, near-

field technologies have significant advantages that are worth

exploring: (1) their shorter range raises less privacy implica-

tions compared to the far-field counterparts; (2) technologies

such as NFC are ubiquitous in our smart phones as well as

battery-free everyday objects (e.g., credit cards, ID cards,

etc.). The few systems that do explore near-field localization

in prior work are limited, however, in one of two key ways:

(1) First, they only operate at extremely close ranges (e.g.,

few 𝑐𝑚), at which point, localization reduces to proximity

sensing [42]. This excludes ranges of tens of centimeters – an

interesting region where both near-field and far-field effects

are in play. (2) Second, most prior near-field localization sys-

tems require rigid coils that can only be mounted on regular

and flat surfaces [25, 34].

This paper aims to use NFC multi-coil beamforming to

detect the presence and location of certain objects of interest

within tens of centimeters – where both near-field and far-

field effects interplay. We seek to sense certain classes of

objects made of conductive material (e.g., objects containing

metal, or human hands) in close proximity (e.g., few tens of

https://doi.org/10.1145/3412382.3458254
https://doi.org/10.1145/3412382.3458254
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TextileSense

(a). Pose Estimation (c). Gesture Recognition

(b). Tagged Object Detection

Figure 1: TextileSense can be integrated into ordinary
furniture (e.g., couch, bed, or carpet). Multiple textile
coils sense the presence and location of conductive ob-
jects within a few tens of centimeters. This opens up
many applications: a) body posture sensing; b) Lost
and found: TextileSense notifies the userwhere he/she
left a wallet; c) user interface: the blanket serves as a
touchless screen to control home appliances.

centimeters). Our system senses these objects with flexible

textile-friendly coils attached to existing irregularly shaped

home surfaces like a couch or a carpet. We demonstrate

how this opens up several applications for human-computer

interfaces, gesture, and posture sensing (see Fig. 1).

We present TextileSense – a near-field sensing system

for flexible textile surfaces that senses surrounding objects

made of conductive materials. TextileSense’s core includes

multiple textile coil antennas that can be embedded in the

furniture covering and readily hidden by puffy paints. The

coils together operate as a near-field MIMO system and can

manipulate the near-field to recognize objects of interest

at unknown locations across farther distances. We consider

two classes of objects: (1) Tagged non-conductive objects,

such as NFC-enabled credit cards and key fobs, whose iden-

tity and location can be obtained; (2) Untagged conductive

objects, such as human hands and metallic objects, whose

presence and location can be identified. A detailed experi-

mental evaluation on TextileSense shows a 3.6 𝑐𝑚 accuracy

in locating NFC tags with various distances and orientations

and a 2.9 𝑐𝑚 accuracy in locating human hands. We further

show that TextileSense can operate accurately at a distance

of 20.3 𝑐𝑚, a four-fold improvement over the range limit of

5 𝑐𝑚 of commercial NFC.

TextileSense’s secret sauce is a mechanism to develop a

textile NFC reader with the ability to accurately sense the

location of tagged/untagged objects, within a few tens of cen-

timeters of the furniture, regardless of their position or ori-

entation. To do so, we rely on a familiar wireless technology:

MIMO. In far-field wireless technologies (e.g., Wi-Fi, cellular,

etc.), MIMO uses multi-antenna radios to collectively beam

signal power towards different spatial directions so as to im-

prove radio coverage and enable advanced location tracking.

However, developing the analogous multi-coil MIMO in the

near-field poses several new challenges. First, to beam en-

ergy accurately and sense an object, one needs to know the

direction; yet, for tag-free objects at unknown locations, this

is unknown a priori, leading to a chicken-or-egg problem.

Second, unlike in the traditional far-field propagation model,

even if we do find the optimal beamforming direction, it may

not directly relate to the location of objects. The rest of this

paper describes how we solve these key challenges to enable

near-field MIMO for NFC.

DetectingObjectsUsingNear-FieldBeamforming: The
first challenge is to address the chicken-or-egg problem: how

to know the direction to beam RF energy without knowing

the object’s location? A natural approach to do so is to ap-

ply a variety of beamforming weights and beam energy to

different subsets of the space within proximity of the NFC

furniture. These beamforming weights must be carefully

chosen to fully cover the space around the furniture, yet min-

imizing the overlap between them to speed up the search.

This calls for precise models on how beamforming weights

in the near-field translate into the spatial patterns of energy.

While such models have been explored in the far-field (e.g.

in the RFID context [44]), doing so for the near-field com-

munication is more complicated. The energized pattern is

not only determined by the set of phase shifts applied across

the array of NFC readers, but also impacted by the location,

orientation, and impedance of the unknown objects.

To address this challenge, TextileSense develops a blind

near-field beamforming algorithm to sense objects in the

near-fieldwith unknown locations, orientation, and impedance.

At a high level, TextileSense uses the magnetic coupling be-

tween the object and the reader to infer the optimal beam-

forming weights to detect its presence, regardless of whether

this object has NFC coils or is made of conductive materials.

Specifically, once the object couples with the reader, it can be

seen as a high impedance load to the transmitter circuit (NFC

reader). In other words, the transmitter circuit should notice

a voltage variation if a load is introduced into the circuit.

The voltage variation will change when the load (e.g. NFC

card, metal, human body, etc.) harvests more energy from

the NFC readers, and this variation can be measured from

the transmitter side. By leveraging this physical principle,

TextileSense uses a gradient-based approach favoring the set

of beamforming weights which introduce large voltage vari-

ation into the transmitter circuit. By repeating this process,

our algorithm converges to the optimal set of beamforming
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weights that sense the presence of objects in proximity. Sec. 4

further details our solution to detect objects.

Locating Objects in the Near-Field: Once detected, the

next challenge TextileSense must address is to locate the

objects of interest. A key challenge here is the limited band-

width of NFC as well as the non-applicability of traditional

far-field MIMO location tracking solutions that rely on the

distance between the objects-of-interest and the reader being

farther than one wavelength. To address this, our approach

relies on the fact that unlike the far-field, the near-field expe-

riences significant voltage shifts at readers due to coupling

that can be reliably measured. TextileSense develops a de-

tailed empirical model of the locations of the object based on

the beamforming weights as well as the amplitude of object-

related voltage response as perceived from the readers. Sec. 5

describes the details of our approach.

Building NFC-enabled Flexible Textiles: Finally, Tex-

tileSense should integrate textile-compatible coils to build

NFC-enabled furniture. In collaboration with material sci-

ence researchers, we present a novel solution to fabricate

coils with conductive fabric, which can be woven into the

furniture covering and allows for flexibility and stretchabil-

ity to ensure user comfort. Sec. 6 describes how TextileSense

is informed by experimentation and analysis to ensure the

robustness of its textile coils when subject to bending and

crumpling, and how it models the consequent resonant fre-

quency shift and antenna gain degradation. Further, in Sec. 9,

we discuss the possible security implication of TextileSense .

Applications: TextileSense opens up several applications

which we briefly explain below and evaluate in Sec. 8.6:

• Object Tracking: TextileSense can identify and track the
location of objects of interest already with an NFC coil,

e.g. a credit card. This can be used to both track your

credit card if it is lost, as well as track NFC-tagged ob-

jects at fine-grained accuracy in virtual reality games.

• User Interface: TextileSense can also serve as a user

interface that transforms your furniture into a touch-

less screen to control your devices. We evaluate the

specific application of tracking fine-grained gestures

of a human hand.

• Body Posture Estimation: TextileSense can detect the

location where the user is seated in the couch and

recognize their body posture relying on the coupling

between the human body and TextileSense.

Limitations: We emphasize a few important limitations

of TextileSense (detailed in Sec. 9): (1) TextileSense cannot

deal with extremely small spacing between multiple objects

that need to be simultaneously discerned (within 1.5𝑚𝑚)

due to the strong coupling among them; (2) TextileSense’s

performance can be degraded by extreme folds or wrinkles

of textiles, and our approach explicitly designs solutions

to minimize this degradation. (3) TextileSense NFC readers

require a power source; however, it can readily piggyback

on access to wall power commonly available in configurable

furniture (e.g. reclinable couches).

We implement TextileSense on four software-defined ra-

dios, each connected to an 18 × 18 𝑐𝑚 custom conductive

Nylon-based square coil attached to the couch. Our results

show:

• TextileSense achieves an average accuracy of 3.6 𝑐𝑚

in locating passive NFC tags.

• TextileSense achieves an average accuracy of 2.9 𝑐𝑚

in locating a human hand.

• TextileSense achieves a detection range of 20.3 𝑐𝑚

using four software-defined radios in tracking NFC

cards in close proximity, a 4 × improvement compared

to commercial NFC systems.

Contributions: We propose a localization system design

of a MIMO-enabled NFC reader which locates surrounding

NFC tags as well as untagged conductive objects. Our system

achieves few centimeter level location tracking of nearby

tagged and untagged objects and an overall detection range

of 20.3 𝑐𝑚 from the textile NFC reader.

Video: https://youtu.be/Ieil0NQlk_M.

2 NFC FUNDAMENTALS
This section describes the basics of the NFC protocol and the

mechanics of near-field magnetic coupling for both tagged

and untagged objects.

NFC Protocol: According to the ISO 14443 NFC proto-

col, an NFC reader initiates communication by periodically

broadcasting a universal query command to wake up nearby

tags (if any) and solicit responses (standard acknowledgment

and unique IDs). Meanwhile, it inevitably experiences mag-

netic coupling with nearby conducting objects, even if they

do not contain NFC coils.

Magnetic Coupling in NFC: The underlying communi-

cation principle of NFC is based on magnetic coupling. The

NFC reader operates in the 13.56MHz ISM band. The current

flowing through the coil antenna of the NFC reader generates

a magnetic field that couples with nearby NFC tags or con-

ductive untagged objects. In the rest of this discussion, we

use object to denote either a tagged or untagged object that

magnetically couples with the NFC reader – the underlying

physics remains largely the same. The magnetic coupling

effect transfers energy from the NFC reader to the object

owing to an induced current in the object. In the near-field,

since the strength of magnetic fields decreases rapidly with

distance by its inverse 2−3rd power [40], the communication

range of commercial NFC systems is around 5 cm.

https://youtu.be/Ieil0NQlk_M
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(a). Single Reader (b). Multiple Readers

Figure 2: (a) Themagnetic coupling between the active
NFC reader and an object of interest can be quanti-
fied as the mutual inductance 𝑚. It induces a voltage
𝑉𝑅 across the object’s equivalent circuit. (b) A team of
reader coils couple with a tagged or untagged object.

Fig. 2 (a) shows a simplified circuit diagram for a single pair

of reader and object, with the latter shown by its equivalent

circuit. Due to the magnetic coupling between the reader and

the object, the current 𝐼𝑇 in the reader will induce a voltage

𝑉𝑅 on the object:

𝑉𝑅 = 𝑍𝑅𝐼𝑅 =𝑚𝐼𝑇 (1)

where𝑚 is the mutual inductance between the antenna of

the object and the reader at the resonant frequency; 𝑍𝑅 and

𝐼𝑅 are the impedance and current induced in the object’s

equivalent circuit.

As the object perceives an induced voltage from the reader,

the current induced also generates its own magnetic field

which changes the voltage across the reader antenna. The

voltage 𝑉𝑇 across the reader antenna is written as:

𝑉𝑇 = 𝑉0 −𝑉 ′𝑅 = 𝑉0 −𝑚𝐼𝑅 (2)

where𝑉 ′
𝑅
is the voltage introduced by the object and𝑉0 is the

original voltage on the reader antenna without any object

in range. In effect, the object functions as a voltage divider.

Hence, we conclude that when there is less energy delivered

to the nearby object, the voltage on the corresponding NFC

reader antenna will be larger. In the paper, we show how

TextileSense leverages this basic property of NFC to detect

the presence of nearby objects without knowledge of their

orientation, location, and impedance.

3 OVERVIEW
TextileSense aims to detect and locate objects in the proxim-

ity of a multiple-coil textile NFC reader. It specifically aims to

beamform electromagnetic waves in the near-field to detect

the influence of conductive objects.

Approach: TextileSense’s system design is as follows: Tex-

tileSense applies different beamforming weights across mul-

tiple textile coils of an NFC reader, which can alter the mag-

netic field to maximize the influence of conductive objects

(tagged or untagged) in the near-field. It infers the optimal

set of beamforming weights by measuring the voltage across

multiple reader coils. The underlying principle relies on the

weak magnetic coupling between the object and the reader

coils. As we gradually measure the voltage across multiple

coils corresponding to different beamforming weight vectors,

we can learn the environment and improve the searching

of optimal beamforming vectors to discover various objects

in the near-field. Once TextileSense discovers an object, it

leverages the voltage measurement on the object’s influence

across reader coils with a data-driven model to locate the

object.

Challenges: The rest of the paper addresses the key chal-

lenges in designing three main aspects of TextileSense:

(1) OptimalNear-FieldBeamforming: First, TextileSense
needs to measure the wireless channel corresponding to the

magnetic coupling of the objects of interest to infer the op-

timal beamforming vector that can best detect this object.

While the channel can be measured indirectly by magnetic

coupling, TextileSense needs to detect objects that are out-

side the range of measurement sensitivity of any single NFC

reader coil. Thus, TextileSense must collaboratively process

signals across all coils to search for potential objects and

amplify the magnetic feedback. While one may measure the

channel of each object individually in the far-field, the in-

duced magnetic field across objects can interfere with each

other in the near-field. Thus, a key to finding the accurate op-

timal beamforming vector for each object is to model and es-

timate the radio environment including the coupling among

multiple objects and the influence of undesired ambient con-

ductors. Sec. 4 describes our approach.

(2) Localization in the Near-field: Second, TextileSense

should localize the object using the voltage measured across

multiple reader coils. At a first glance, we may consider using

traditional far-field localization techniques [23, 46]. However,

in the near-field, modeling the magnetic field under multiple

reader coils is complex and different from the far-field EM

modeling. Thus, we propose a near-field localization algo-

rithm, where a data-driven model captures the relationship

between the voltage measurement across multiple reader

coils and the location of objects while taking the beamform-

ing vectors into account. Sec. 5 details our approach.

(3) Designing Textile Coils for Near-field MIMO: Fi-

nally, we explore how TextileSense designs coils that can

be embedded in textiles. While TextileSense can improve its

performance of localization and coverage by adding more

reader coils, one must consider the physical constraints of

the total available area to deploy a multi-coil system on the

furniture, like on a couch. In addition, TextileSense must

account for distortions such as folding and crumpling of the
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fabric on which coils are attached. Sec. 6 describes how we

mitigate these challenges.

4 NEAR-FIELD BLIND BEAMFORMING
TextileSense provides a near-field MIMO solution that de-

tects the presence of conductive objects whose location,

impedance, and orientation are a priori unknown. We call

this near-field blind beamforming, where blind denotes the

fact that neither do we have prior wireless channel measure-

ments from the objects, nor are we aware of their existence

or location. This leads to a chicken-or-egg problem: to beam

energy to an object, we need its location, which is precisely

what we are aiming to find. Unlike the far-field [44], beam-

forming weights in the near-field under the NFC context

are heavily influenced by the environment, the reader itself,

and the presence of conductive objects. In this section, we

illustrate how this fundamentally changes our approach to

perform blind beamforming.

4.1 Indirect Channel Measurements
In this section, we describe our approach to detect the pres-

ence of passive conductive objects. In the far-field, without

prior knowledge of the object’s location or wireless channels,

the reader would struggle to detect if the object is present

or otherwise. In the near-field, however, a reader may detect

the presence of a conductive object with no energy source.

This is because the object and the reader can magnetically

couple with each other. This coupling effect is captured by

the mutual inductance between the object and the reader,

which is a function of the impedance and location of both

the reader and the object. Thus, the mutual inductance plays

a role in near-field magnetic channels which is similar to the

wireless channel state information in the far-field. We seek to

use this information to find the optimal beamforming vector

that maximizes the amount of energy delivered to the object.

This is critical in improving our location-tracking algorithm

given that the amount of energy absorbed by the object gives

us important cues about the location of the object (see Sec. 5).

To obtain the optimal beamforming vector to an object,

TextileSense needs to measure its near-field magnetic chan-

nel (we deal with multiple objects in Sec. 4.3). Consider a

team of reader coils (see Fig. 2). Mathematically, let us assume

that a team of 𝑁 reader coils collaboratively beam energy to

one nearby object. The voltage induced by the object at the

𝑖th reader coil can be written as:

𝑉 ′𝑅𝑖 =𝑚𝑇𝑖

𝑁∑
𝑘=1

𝑚𝑇𝑘 𝐼𝑇𝑘 /𝑍𝑅 (3)

where𝑚𝑇𝑖 is the mutual inductance between the nearby ob-

ject and the 𝑖th reader coil, 𝐼𝑇𝑘 is the current in the 𝑘 th reader

coil and 𝑍𝑅 is the unknown object’s impedance as in the

equivalent circuit in Fig. 2(b). In this equation,

∑𝑁
𝑘=1

𝑚𝑇𝑘 𝐼𝑇𝑘
is the voltage introduced to the object by all 𝑁 reader coils,

and can be represented by 𝑉𝑅 . In other words, the voltage

induced at the NFC reader coil is proportional to the mutual

inductance,𝑚𝑇𝑖 . Indeed, the magnetic channel𝑚𝑇𝑖 is critical

in performing optimal beamforming of energy towards the

object. This is because, for optimal beamforming, one needs

to apply a set of weights to the current of transmitted signal

𝐼𝑇𝑖 which can add up the induced signal 𝑉𝑅 constructively

at the object. Based on the channel reciprocity, if we know

the channel between the object and each reader coil𝑚𝑇𝑖 , one

can write the optimal beamforming vector 𝐵∗ as:

𝐵∗ = [
𝑚
†
𝑇𝑖∑

𝑖 |𝑚𝑇𝑖 |2
, 𝑖 = 1, ..., 𝑁 ] (4)

where † is the conjugate operator.
However, obtaining the magnetic channel 𝑚𝑇𝑖 directly

from themeasured voltage at the reader coil𝑉𝑇𝑖 is not straight-

forward. The reason is twofold: (1). The voltage induced at a

certain reader coil is also influenced by the magnetic chan-

nels of other coils. Ideally, one can measure the channel by

making all other reader coils open-circuit, then use a known

impedance of the object with Eqn. 3 and apply 𝐵∗ to beam-

form optimally to the object [12]. However, turning off coils

would reduce the voltage and decrease the system’s effec-

tive range. (2). We typically do not know the impedance of

the object a priori, which influences𝑚𝑇𝑖 . The following sec-

tion details how TextileSense infers the object’s voltage with

unknown impedance, location, and orientation.

4.2 Finding Optimal Beamforming Vectors
As explained in the previous section, measuring the precise

voltage induced at the objects purely from the voltage at a

reader coil is challenging due to several unknowns, such as

the impedance of the object and the influence of other coils.

However, even in absence of these quantities, we can make

the following intuitive observation: if the optimal beamform-

ing vector is used across coils to maximize energy delivered

to a specific object, the sum of voltage measured across all

reader coils should reach a minimum. At a high level, this

is because transferring higher net energy to the object will

reduce the net energy available within the readers.

To mathematically see why, we revisit Eqn. 2 and rewrite

it by including the mutual inductance between the reader

coils. We write the voltage at the 𝑖th reader coil as:

𝑉𝑇𝑖 = 𝑉0𝑖 +
∑
𝑘≠𝑖

𝑉𝑇𝑖𝑘 −𝑉 ′𝑅𝑖 = 𝑉𝑇 0𝑖 −𝑉 ′𝑅𝑖 (5)

where: (1) 𝑉0𝑖 is the voltage of 𝑖th reader coil when other

reader coils are open-circuit and no other objects are present

in the near-field, (2) 𝑉𝑇𝑖𝑘 is the voltage introduced by nearby
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(a). Voltage Measurement (b). Zoomed-in Measurement (c). Multiple Objects

Figure 3: (a) shows the sum of voltage (normalized) measured across three coils when two of them apply different
beamforming weights with a step of 5° from 0° to 360°. The global minimum represents the beamforming vector
that delivers amaximum amount of power to the nearby object. (b) shows the zoomed-in version in the proximity
of the global minimum. (c) shows the voltage measurements when another object is present in the proximity of
the target object.

reader coils (𝑉𝑇𝑖𝑘 =𝑚𝑇𝑖𝑘 𝐼𝑇𝑘 , where𝑚𝑇𝑖𝑘 is the mutual induc-

tance between the 𝑖th reader coil and the 𝑘 th reader coil).

These two components can be calculated as known priors,

and we use𝑉𝑇 0𝑖 to represent the sum of them. Therefore, it is

easy to see that the voltage at the object is maximized when

the voltage at the reader is minimized.

At this point, we can formulate an optimization problem

that finds the beamforming weights that minimize the net

reader voltage. Assume the space of beamforming vectors has

𝐽 discrete elements 𝐵 𝑗 ( 𝑗 = 1, ..., 𝐽 ), and𝑉
𝑗

𝑇𝑖
(𝑖 = 1, ..., 𝑁 ) is the

voltage of the 𝑖th reader coil when the beamforming vector

𝐵 𝑗 is applied. Let 𝑉
𝑗

𝑇 0𝑖
be the initial voltage of the 𝑖th reader

coil when the beamforming vector 𝐵 𝑗 is applied without any

object present. Specifically, we write 𝑉
𝑗

𝑇𝑖
= 𝑉

𝑗

𝑇 0𝑖
−𝑉 ′𝑗

𝑅𝑖
. Our

objective is to find the beamforming vector that delivers a

maximum amount of energy to the nearby object. Given that

we assume only one object is in the near-field for now, we

can obtain the optimal beamforming vector as follows:

𝑗∗ = argmin

𝑗

𝑁∑
𝑖=1

| |𝑉 𝑗

𝑇𝑖
| |2 (6)

Our analysis shows that for arrays of coils, the space of

beamforming weights is locally convex. For example, we

analyze a three-coil system with one nearby object while ap-

plying various beamforming weights across two coils. Fig. 3

plots the sum of the voltage measurement on three coils. It

shows a global minimum that delivers maximized energy to

the object (see the zoomed-in version in Fig. 3 (b)). Hence, we

use Stochastic Gradient Descent to perform the optimization.

4.3 Beamforming to Multiple Objects
While our discussion so far considers only one object in the

near-field, this section deals with the case of multiple objects.

In traditional far-field beamforming, multiple objects do not

pose a problem, since they do not influence each other. How-

ever, in the near-field, multiple objects can potentially couple

with each other at the same time. TextileSense therefore has

to consider multiple objects – if not, the voltage measured

from the reader coils will not optimally beam energy to all

objects. To see why, we revisit our example in Fig. 3 (b), add

another object, and measure again the sum of the voltage

across three coils corresponding to different beamforming

weights, as shown in Fig. 3 (c). We notice that the consequent

voltage map varies considerably from the single-object case.

While priorwork in the near-field inwireless charging [37]

can charge multiple mobile phones, it does not guarantee to

deliver optimized energy to individual receivers; Hence, it

cannot guarantee to detect all objects in the near-field.

As a result, TextileSense must account for multiple objects

and decouple their influence on the voltage across reader

coils. It then finds the optimal beamforming vector for each

object in the near-field. We further note that a simple exhaus-

tive search is too time-consuming to be practical. Therefore,

TextileSense needs to maximize the total number of objects

found under a limited overall time budget.

TextileSense’s high-level approach to do so relies on the

voltage measurements from multiple reader coils, and it pro-

gressively detects objects in the near-field. It then uses this

information to update its optimization algorithm.

Discovering Objects: Our approach to discover objects

initializes by assuming the presence of a single object in

hope of finding a response. We then utilize any response we
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receive, particularly from nearby objects to infer the presence

of other objects. Specifically, we leverage the fact that the

responses from nearby objects are impacted by the coupling

between objects that are farther away.

To model the coupling among multiple objects, we revisit

Eqn. 3 and rewrite the voltage induced by the object 𝑟 (𝑟 =

1, ..., 𝑄) at the reader coil 𝑖 when the beamforming vector 𝐵 𝑗

is applied as:

𝑉
′𝑗
𝑟𝑖 =𝑚𝑇𝑖𝑟 (

induced voltage at the object 𝑟︷                                           ︸︸                                           ︷
𝑁∑
𝑘=1

𝑚𝑇𝑘𝑟 𝐼
𝑗

𝑇𝑘
−

∑
𝑞≠𝑟

𝑚𝑅𝑞𝑟 𝐼
𝑗

𝑇𝑞︸       ︷︷       ︸
voltage from nearby objects

)/𝑍𝑟 , (7)

𝐼
𝑗

𝑇𝑞
=

𝑁∑
𝑘=1

𝑚𝑇𝑘𝑞 𝐼
𝑗

𝑇𝑘
/𝑍𝑞 (8)

where 𝑍𝑟 and 𝑍𝑞 are the unknown impedance for the object

𝑟 and 𝑞 (in their equivalent circuit representations); 𝐼
𝑗

𝑇𝑘
is the

current in the 𝑘 th reader coil when the 𝑗-th beamforming

vector is applied; 𝐼
𝑗

𝑇𝑞
is the corresponding current in the ob-

ject 𝑞;𝑚𝑇𝑖𝑟 is the mutual inductance between the 𝑖th reader

coil and the object 𝑟 ;𝑚𝑅𝑞𝑟 is the mutual inductance between

the object 𝑟 and the object 𝑞. Now, we can write the volt-

age at the 𝑖th reader coil as 𝑉
𝑗

𝑇𝑖
= 𝑉

𝑗

𝑇 0𝑖
−∑𝑄

𝑟=1
𝑉
′𝑗
𝑟𝑖 when the

beamforming vector 𝐵 𝑗 is applied.

At this point, we aim to estimate the channel information

for each potential object. We set an upper bound 𝑄 for the

number of potential objects in the near-field. For an 𝑁 -coil

system and 𝑅 potential objects in the near-field, there are

𝑁 ∗𝑄 unknown mutual inductance between the objects and

the reader coils,

(
𝑄
2

)
unknown mutual inductance among the

objects, and 𝑄 unknown impedance of the objects. While

there are 𝑁 ∗ 𝑄 +
(
𝑄
2

)
+ 𝑄 unknown parameters, we can

resolve them by applying (𝑁 ∗ 𝑄 +
(
𝑄
2

)
+ 𝑄)/𝑁 different

sets of beamforming weights since we obtain 𝑁 equations

from each reader coil every time we apply one beamforming

vector. For example, with four coils and five potential objects,

we need to apply 9 different sets of beamforming weights.

While the equations are non-linear, we use Powell’s hybrid

algorithm [30] to solve them. We evaluate our approach with

a four-coil system and four potential objects in Sec. 8.5.

Choosing Beamforming Vectors: There are many pos-

sible combinations of beamforming vectors to be applied

for estimating the channel of potential objects. TextileSense

needs to favor the beamforming vector which delivers a

larger amount of energy to these objects. In Sec. 4.2, we for-

mulate an optimization problem to find the beamforming

weights that minimize net voltage. TextileSense leverages

the beamforming weights along the gradient to estimate the

magnetic channels by solving the non-linear equations.

Improving Object Count Estimates: A key to accurately

estimating the potential conductive objects in the near-field

is to set an appropriate upper bound of the number of them.

TextileSense adaptively tunes the upper bound 𝑄 based on

the responses from tagged objects in the environment, if

available, which provide accurate channel information. We

always start estimating the number of objects with an initial

𝑄 . If there is no response from a tagged object when we apply

the estimated channel for potential objects, we increase𝑄 by

one. As we gradually receive responses, we can progressively

fine-tune our estimates of these parameters with increasing

accuracy. In our experiment, we set the initial value of 𝑄

to be 5. With this approach, we can decouple the influence

from multiple objects on the voltage of the reader coils and

calculate the optimal beamforming vector for each object.

4.4 Tagged vs. Untagged Objects
Telling Apart Tagged vs. Untagged Objects: Untagged

objects that are conductive and close to the reader will also

couple with our coil antennas. Note that TextileSense models

the magnetic channels for both tagged and untagged objects

in an identical way. In Sec. 4.3, TextileSense estimates the

magnetic channels for all potential objects. With the optimal

beamforming, TextileSense can discover them in the near-

field. Of these objects, NFC tags actively harvest energy in

the near-field and can therefore provide a response. We treat

the non-responsive objects as the untagged conductors.

Howwell canwedetectUntaggedConductingObjects?
An important factor that decides how well TextileSense can

sense a conductive object is how effectively it resonates

with the NFC frequency of operation. We note that different

shapes, volumes, and materials of conductors lead to various

resonant frequencies. For example, water, mobile phones,

computer monitors, and even the human body have distinct

resonant frequencies. Our NFC signal is at 13.56 MHz, which

may not resonate equally well with all classes of objects. Any

mismatch lowers the mutual inductance between the reader

coil and the object, leading to a small voltage variation at the

reader. We explicitly evaluate different classes of conductive

objects sensed by TextileSense in Sec. 8.3.

Modeling Fleeting Conductors: While our optimization

problemmodels objects that are static, objects that were com-

puted in the past may no longer exist at the same location in

the future. To account for this, TextileSense tracks the mag-

netic channel of discovered objects. Note that as conductive

objects couple with nearby objects, their movement changes

the channel of these objects. Thus, TextileSense adaptively

tracks the optimal beamforming vectors of the objects based
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on the voltage feedback from the reader coils. Specifically,

TextileSense monitors the variation of the measured voltage

across the reader coils, which indicates that the magnetic

channels have been changed. Algorithm 1 presents the de-

tails of the complete workflow of TextileSense.

Algorithm 1 TextileSense Algorithm

B* ← Initialized as ∅ ⊲ Optimal beamforming set

𝑄 ← Initialized as 1 ⊲ Upper bound of potential objects

𝐵1 ← Randomly Initialized Beamforming Weights

Loop:
1: for 𝑗 = 1, ..., (𝑁 ∗𝑄 +

(
𝑄
2

)
+𝑄)/𝑁 do

2: Apply 𝐵 𝑗 to the 𝑁 reader coils

3: [𝑉 𝑖 𝑗

𝑇
]𝑖=1,...,𝑁 ← VoltMeasurement ⊲ Sec. 4.1

4: if any response from tagged objects (if any) then
5: Add the optimal beamforming vector 𝐵∗𝑟 into 𝑩∗

6: 𝑄 = 𝑄 + 1 ⊲ Tune upper bound

7: 𝐵 𝑗+1← UpdateBeamformers(𝐵 𝑗 ,𝐵 𝑗−1) ⊲ Sec. 4.2

8: end for
9: 𝑩∗← ObjectEstimation(𝑽𝑻 ) ⊲ Sec. 4.3

10: foreach 𝐵∗𝑟 ∈ B*, 𝑟 = 1, ..., 𝑄 do
11: Apply 𝐵∗𝑟 to the 𝑁 reader coils

12: Localize object 𝑟 ⊲ Sec. 5

13: end if
14: end for

5 NEAR-FIELD LOCALIZATION
This section describes how TextileSense enables an array

of reader coils to locate our objects of interest around the

TextileSense-enabled furniture. While TextileSense so far

presents a blind beamforming algorithm to detect the ob-

jects of interest at unknown locations, it needs to infer their

locations with various distances and orientations based on

their channel responses. TextileSense leverages an efficient

data-driven localization algorithm using the amplitude of

the voltage induced across our coil antennas. We choose to

model amplitude rather than phase given the low frequency

of operation and bandwidth of NFC. Further, the near-field

offers more dramatic variations in voltage amplitudes com-

pared to the far-field due to magnetic coupling.

TextileSense’s Localization Approach: From our experi-

ments, we find that a near-field multi-coil system like Tex-

tileSense exhibits significant coupling effects among its coils,

making their individual electromagnetic field diverge from

standard path loss models in complex ways; the coupling ef-

fects also changewith the location, orientation, and impedance

of the object of interest. Rather than building a complex ana-

lytical model to account for these varying factors, we design

a data-driven approach that empirically measures the rela-

tionship between the voltage and the objects’ location.

We consider the 3-D space within the range of 20 cm and

assume all objects of interest will be detected within this

coverage with TextileSense’s blind beamforming algorithm

in Sec. 4. To localize the objects of interest, we measure the

voltage across the reader coils with the optimal beamforming

weights for a particular object. Our localization algorithm

consists of two stages: (1) Designing our empirical model;

(2) Performing localization. Below we describe its details.

(1). Designing the Voltage vs. Location Model: We take

a data-driven approach and collect the coil voltage 𝑽 at dif-

ferent object locations as a one-time step prior to the deploy-

ment of TextileSense. Specifically, we discretize the space

of interest into a 3-D grid with a fixed gap between two

consecutive grid points. We carefully select a set of grid

points so that they effectively sub-sample our space of inter-

est, and we put objects on these selected points to measure

the voltage across all reader coils, after applying the opti-

mal beamforming weights as described in Sec. 4. Note that

𝑽 = (𝑣1, 𝑣2, ..., 𝑣𝑁 ), where 𝑁 is the number of reader coils.

Once data is collected, we create a model that maps the

voltage measurements 𝑽 to 3-D locations. We use standard

statistical curve/surface fitting methods instead of machine

learning models, given that they perform robustly and to

avoid overfitting. Theoretically, the strength of the surround-

ing EM field of an individual antenna is usually modeled to

be a fading pattern as the distance increases; traditionally, in

the far-field, an antenna is used as a point source. However,

these are not true in the near-field, since the communication

range of the coil is comparable with the dimension of the coil.

For TextileSense, the path loss model varies across different

antennas and also within the aperture of individual antennas.

Yet, it should still exhibit a certain fading pattern when the

distance increases. Thus, TextileSense proposes a two-step

fitting model to generate the voltage map in the 3-D space.

First, TextileSense models the path loss with line fitting

along the z-axis for individual series of grid points with

the same values of 𝑥 and 𝑦 (see the red arrows in Fig. 4

(a)). Specifically, the number of curve models corresponds

to the number of sample points on the xy-plane. With these

curve models, TextileSense is able to estimate 𝑽 with any

𝑧 value, i.e., the distance to the coil plane, as long as the

point lies on the red arrows in Fig. 4. Our next step is to

interpolate 𝑽 at any point on the 2-D xy-plane grid. This
is done by surface fitting (see the blue plane in Fig. 4 (a)).

Specifically, we discretize the z-axis with a smaller step size

(e.g., 0.1 cm or more fine-grained), and for every 𝑧 value, we

fit a surface given the estimates on the corresponding 2-D

grid. By such, TextileSense now effectively stores a bank of

{(𝑣1, 𝑣2, ..., 𝑣𝑁 ), (𝑥,𝑦, 𝑧)} pairs that records the voltage esti-
mates in our space of interest. This can then be used to per-

form localization. Note that the voltage-to-locationmodel are
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(a). Localization (b). Flat Coil (c). Bent Coil

Figure 4: (a) TextileSense’s localization algorithm with four coils. (b) Magnetic radiation pattern of a flat Textile-
Sense coil. The bottom small figures show the radiation strength from Top and Right view. (b) Magnetic radiation
pattern of a curved TextileSense coil with 90° bending angle.

only created once before deploying TextileSense. We evalu-

ate TextileSense’s performance under various environments,

such as the bending scenario in Sec. 8.2.

(2). Object Localization: To locate the object, we first mea-

sure the voltage across the reader coils, and then compare

the measurement with the voltage-to-location model to de-

termine the optimal position (𝑥,𝑦, 𝑧) based on standard 𝐿2
norm on the voltage vector. We compare this position esti-

mate with the true position of an object when we examine

TextileSense’s localization accuracy in Sec. 8.

6 TEXTILE COIL FABRICATION
This section describes our methods to design and fabricate

textile coils. Specifically, we discuss: (1). the design of coil

pattern that maximizes the radiation characteristics within

the constraints of the available area, while remaining ro-

bust to bending and crumpling; (2). fabrication methods that

integrate textile coils on the furniture.

6.1 Textile Coil Material and Fabrication
Textile Coil Material: There are primarily two types of

conductive fabric: (1). intrinsically conductive fibers; (2). non-

conductive substrates, which are then coated with an elec-

trically conductive element such as copper and silver. A key

trade-off that dictates our choice of conductive fabrics to

build our coil antennas is the balance between high conduc-

tivity and low parasitic capacitance. Intrinsically conductive

fibers have better conductivity; yet, woven conductive fibers

tend to have large parasitic capacitance due to the spacing

between individual thread of fibers that is negative to the

performance of coils. In this case, we choose Nickel-Copper

fabric as the conductive textile. This conductive textile sheet

is made of copper and nickel coated nylon ripstop fabric and

has an acrylic adhesive layer for a better transfer.

Textile Coil Fabrication: The conductive textile sheet is

attached to a 0.4 mm flexible acrylic sheet as the flexible

substrate. A laser prototyping system (LPKF U3) is then used

to cut the textile sheet into the desired coil shape. The laser

scanning parameters are carefully selected to cut through

the textile sheet without damaging the acrylic substrate.

6.2 Textile Coil Design
Our objective is to design a coil geometry with an optimized

antenna gain within the furniture’s limited area. In this pa-

per, we particularly consider one side of the couch as the

designed area to deploy our system (See Fig. 8(d). To achieve

an optimized antenna gain, TextileSense needs to consider

the trade-off between the trace width and the number of

loops. We model the Q-factor of an inductor to capture the

efficiency of our coil antenna. Specifically, the Q-factor can be

represented as the ratio of the inductance 𝐿 to the resistance

𝑅 of a coil at a given frequency. Note that the inductance and

the resistance of the coil antenna is a function of the trace

width and the number of loops. We then use the trace width

and the number of loops as the unknown parameters to em-

pirically optimize for the Q-factor. Our evaluation shows that

the optimal design of the textile coil uses 9 turns of loops, 8

mm trace width of each loop and 2 mm gap between loops.

We note that the available deployment area depends on the

furniture. Our approach can be used to design the optimal

configuration for various sizes of the furniture.

6.3 Textile Bending and Crumpling
Fig. 4 (b) shows the simulated magnetic field of our textile

coil without bending (flat). We note that it has high radia-

tion strength and its radiation pattern is perfectly symmetric.

However, when the textile coils are deployed on the furniture
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(b). Textile Coils (c). Tagged and Non-tagged Object

Figure 5: (a) BendingAngle vs. Resonant Frequency / GainDegradation: Aswe bend the coil, its resonant frequency
shifts higher, and its antenna gain at 13.56 MHz degrades. (b) and (c) show the system components.

like a couch, it may not always remain flat. This section de-

scribes the effect of bending and crumpling on TextileSense’s

performance, as measured by degradation in antenna gain.

Bending andCrumpling Effect: Wefirst study the impact

of bending on TextileSense’s performance when deployed on

a couch. We use bending angle to model the bending effect.

The bending angle can be represented as 𝜃 = 𝑊
𝑅
, where

𝑊 is the length of the square coil, and 𝑅 is the radius of an

imaginary cylinder towhich the antenna is bent. For example,

Fig. 4 (c) shows the radiation strength of the coil with 90°

bending angle. We notice that the overall radiation strength

suffers from degradation due to bending. This is because

when we bend the coil antenna, the resonant frequency of

the antenna shifts towards a higher frequency, hence the

gain of the coil decreases. We then evaluate the resonant

frequency shift and the antenna gain degradation across

different bending angles from 20 to 110° (see Fig. 5 (a)). We

notice that the resonant frequency shift and antenna gain

degradation is quasi-linear with different bending angles. We

see a 0.2𝑀𝐻𝑧 resonant frequency shift and a 6 𝑑𝐵 antenna

gain decrease with a 110° bending angle. Also, we model the

crumpling of a coil using multiple cylinders with different

bending angles. We show that our coil antenna has a 9 𝑑𝐵

antenna gain degradation and 0.24𝑀𝐻𝑧 resonant frequency

shift when curved by two imaginary cylinders, both with

110° bending angles, from below and above, respectively.

TextileSense mitigates the gain degradation by using our

near-field beamforming algorithm. In Sec. 8, we evaluate the

robustness of our system with certain bending angles.

7 IMPLEMENTATION
NFCReaders and Tags: TextileSense uses four USRP N210

with BasicTX/LFTX daughterboards operating as the NFC

reader.We feed one LNA [3] and one customized coil antenna

to the antenna port of each USRP. The overall transmitted

power of our setup is within FCC regulations. All USRPs are

synchronized with the same GPS disciplined clock which

removes the frequency and timing offset among USRPs. We

use Mifare Classic 1K tags for tagged object evaluation.

Voltage Measurements: TextileSense measures the volt-

age of reader coils with commercial available detectors [29]

and AD8302 [1]. All detectors connect to an Arduino Due

development board with a 12-bit Analog to Digital Converter.

TextileSense Software: TextileSense runs a real-time beam-

forming search and localization algorithm. It implements

an in-house simplified ISO 14443 NFC protocol that can

query and apply anti-collision mechanisms to nearby ob-

jects in UHD/C++ including phase and amplitude updates.

Our source code for the TextileSense algorithm is fully im-

plemented in Python.

Textile Coil Antenna: We designed square coil antennas

that resonate at 13.56MHz.We fabricated coil antennas using

Cu/Ni-based conductive textiles. In our evaluation, we use

four customized coil antennas which have 9 turns, 8 mm

trace width and 2 mm gap (see Fig. 5), and we deploy them

on the couch (Fig. 8(d)).

Ground Truth and Baseline: We report accuracy of range

and localization in centimeters. To obtain the ground truth,

we use a Bosch GLM50 laser rangefinder with an accuracy

of 1.5𝑚𝑚. We also compare TextileSense with two baseline

systems: (1) A multi-coil localization based system that does

not perform near-field beamforming and instead processes

the voltage of individual coils separately. We then use our

proposed localization approach as described in Sec. 5 to cre-

ate a voltage-to-location model for this baseline. We show

how this system offers poorer range and localization perfor-

mance. (2) A large single-coil system that spans the same

total area as that of the multi-coil system. Given that this is

a single coil system, it cannot perform localization, and can

only detect objects. We demonstrate how this system offers

poorer detection range due to the inability to beamform.
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(a). Power Inference Accuracy (b). Bending Impact (c). Different Types of Objects

Figure 6: (a) TextileSense infers the power delivered to the nearby objects. The normalized error is the ratio of
the error and the ground truth. (b) TextileSense has a better localization performance under the bent scenario
than the ideal one. We note that our data-driven system was calibrated only under the bent scenario. In later
experiments, we evaluate our system under the bent scenario. (c) TextileSense achieves an average localization
accuracy of 3.57 cm, 2.9679 cm, and 0.8956 cm for NFC tags, human hands, and metallic objects respectively.

(a). Range vs. Orientation (b). Location Accuracy vs Orientation (c). # of Objects

Figure 7: (a) In average, TextileSense shows a 2.04 × detection range compared to a single-coil baseline approach
with the same total transmitted power under different object orientations. (b) TextileSense demonstrates its ro-
bustness of localization under various object orientations. (c) TextileSense’s localization accuracy when multiple
objects are present.

8 RESULTS
8.1 Accuracy of Inferring Power Transfer
Method: In this section, we evaluate whether TextileSense’s
beamforming approach can correctly estimate the trans-

ferred power to the objects of interest, a key primitive that

stems from beamforming and is required for localization. We

evaluate the accuracy in inferring the power transferred to

the object and compare it to the single-coil system with the

same antenna gain and transmitted power. In this experiment,

we use four-coil TextileSense to infer the power delivered to

one object by measuring the corresponding power induced

across all the reader coils. Specifically, we use a receiver coil

with a similar impedance and geometry as a potential object

(e.g., NFC tag). We then connect the receiver coil to a high-

resolution power monitor to obtain our ground truth. We

deploy the receiver coil over various locations and distance

up to 50 cm from the reader coils. We infer the power deliv-

ered to the receiver coil using TextileSense’s approach: we

run the searching algorithm of TextileSense to identify one

beamforming vector which delivers the maximum amount

of energy to the receiver coil. We then calculate the error in

the actual delivered power versus the estimated power, and

output the normalized error. For the single-coil system, we

assume a known impedance of the receiver coil and calculate

the power delivered to the receiver coil directly from the

measured power at the reader coil.

Results: Fig. 6 (a) shows the normalized error of estimated

power along different distances between the reader coils and

the receiver coil for both TextileSense and the single-coil

baseline. TextileSense has a mean error of 4.2% in inferring

the amount of power delivered to the object. As expected, we

notice a gradually increasing power inference error and stan-

dard deviation as the distance to the receiver coil increases.

We note that our evaluation board has a 12-bit ADC which
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could limit the resolution of the measured power. Compared

to the single-coil baseline, TextileSense achieves a much

higher accuracy of power inference at the same distance.

This is because of the gain of beamforming which amplifies

minute power variation of the receiver coil even when it is

far away from the readers. This helps TextileSense detect the

objects in close proximity.

8.2 Localization under Bending
Method: We deploy our system in both the ideal scenario

when the coils are flat, and the bent scenario when the coils

are bent at 60°. Note that TextileSense takes a data-driven

approach to collect the voltage levels at different object lo-

cations prior to deployment of the system. We evaluate the

localization performance under the ideal scenario and the

bent scenario. In the evaluation, we consider NFC-enabled

objects.

Results: Fig. 6 (b) shows the localization accuracy of Tex-

tileSense under ideal (flat) and bent scenarios. Interestingly,

TextileSense has a better localization performance under

bending. This is because TextileSense’s data-driven system

was calibrated only under the bent scenario. While one of the

natural limitations of TextileSense’s localization algorithm

is that its performance degrades when the coil is bent, this

drop in accuracy is limited. Overall, TextileSense’s approach

is robust to significant bending. We note that all remaining

experiments are conducted under the bent scenario.

8.3 Tagged vs. Non-tagged Location
Accuracy

We evaluate the impact of various types of objects on the

localization performance of TextileSense. In the experiments,

we consider (1) tagged object: NFC tags, (2) non-tagged ob-

ject: human hands and a metallic case (10 × 8 × 5 cm).

Method: We note that, from our experiments, TextileSense

can achieve a maximum detection distance of 20.3 𝑐𝑚, 7.5

𝑐𝑚, and 5 𝑐𝑚 for NFC tag, human hand, and metallic case,

respectively. Thus, we deploy our objects of interest at over

200 various locations within the coverage area of the max-

imum detection distance. Our goal is to detect the object

at unknown locations and estimate its 3-D location using

TextileSense’s localization algorithm. Further, we compare

TextileSense’s performance of localizing one NFC-tagged

object with a naïve approach (the multi-coil baseline), where

each reader coil monitors the voltage individually.

Results: Fig. 6 (c) plots the localization accuracy for dif-

ferent objects with various distances to the reader coils. As

we expected, the localization error increases with the dis-

tance. Overall, TextileSense achieves an average accuracy of

3.57𝑐𝑚, 2.9679 𝑐𝑚, and 0.8956 𝑐𝑚 for NFC tag, human hand,

and metallic case, respectively. We note that TextileSense

outperforms the multi-coil baseline, which has significantly

poorer detection range (2 and 12 𝑐𝑚 for metallic and NFC-

tagged objects) and location accuracy (16 𝑐𝑚 in average).

This shows that in the absence of near-field beamforming,

both the detection range and localization accuracy are worse,

even if multiple coils are employed.

We note that counter-intuitively, NFC tags have modestly

lower localization accuracy compared to human hands. This

is owing to each NFC tag’s smaller form-factor compared to

the other objects considered. We also note that the detection

range of the system with untagged objects is lower, given

that they do not benefit from the coding gain of NFC tags.

We note that the standard deviation of the localization error

increases as an untagged object (e.g., human hand) moves

farther away from the reader coils, an effect expected due to

the degradation of its coupling with the reader coils.

8.4 Impact of Object Orientation
We evaluate the impact of object orientations on the de-

tection distance and localization accuracy of TextileSense.

We compare TextileSense’s performance with the single-coil

baseline that has the same total transmitted power.

Method: We use the reader coil plane as the reference plane

and place one object (e.g., an NFC tag) at various locations

with different elevation and azimuth angles w.r.t. the refer-

ence plane. In our experiments, the initial orientation of the

object is facing the reader coil, defined as 0° in elevation and

0° in azimuth. We rotate the object with its elevation and

azimuth angle varying from 0° to 90° in steps of 45°.

Results: Fig. 7 (a) and Fig. 7 (b) shows the results of the

maximum detection distance and the localization accuracy

with different object orientations. We observe that as we

rotate the object along the azimuth and elevation, the sys-

tem performance drops. We note that this is because the

cross-sectional area between the reader coils and the object

decreases due to its own rectangular form factor. However,

our localization error at even the poorest object orientations

remains in the range of 2 to 6 𝑐𝑚. Note that we do not report

the localization error for the single-coil baseline given that

it lacks the ability to triangulate the tag position.

In terms of object detection range, TextileSense signifi-

cantly outperforms the single-coil baseline by 2×. We high-

light that TextileSense’s extended detection range stems from

TextileSense’s near-field beamforming solution that alters

the distribution of the EM field to deliver maximized energy

to the object. From our experiments, we show an average of

14% in relative distance deviation (the ratio of distance de-

viation to the average distance across various orientations)

for TextileSense and an average of 25% relative distance

deviation for the single-coil baseline. Hence, TextileSense
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(a). Tagged Object Tracking (b). Human Hand Tracking (c). Metallic Object Tracking (d). TextileSense couch.

Figure 8: CDF of localization accuracy for (a) NFC-tagged object, (b) human hand, (c) untagged metallic object. (d)
Example Application Setup.

has better resilience and stability in the range performance

across various object orientations compared to the single-coil

baseline.

8.5 Impact of Number of Objects
We evaluate the impact of the number of objects placed in the

close proximity on the system performance from two aspects:

maximum detection distance and localization accuracy. In

the experiment, we use NFC-tagged objects as an example

to test the performance, given that the tags’ ID will be useful

in confirming which and how many objects were identified.

Method: We deploy up to four NFC-tagged objects within

a range of 25 𝑐𝑚 from the reader coils. We consider various

spacings among multiple NFC-tagged objects from 0 (put

together) to 30 𝑐𝑚 while placed along various orientations.

Results: Fig. 7 (c) shows the mean and standard deviation

of the maximum detection distance and the localization accu-

racy versus the number of NFC-tagged objects. As expected,

the mean of detection distance and localization accuracy

decreases with more objects (an average of 0.75 𝑐𝑚 detection

distance and 0.95 𝑐𝑚 localization accuracy drop per object).

The dip is due to weak coupling among adjacent objects.

Yet, the dip is not substantial because TextileSense optimizes

the energy delivery one object at a time. The high variance

is due to the short spacing among the objects. We observe

that TextileSense, in some experiments, achieves a higher-

than-expected maximum detection distance when multiple

objects are present. We believe this stems from the fact that

adjacent objects could act as passive relays to other objects,

which allows for better efficiency in energy delivery. We

also find that closely packed NFC-enabled objects within 1.5

mm of each other generate strong interference, which makes

them struggle to harvest enough energy to make responses.

Further, even if they harvest enough energy, their signals

are much more likely to collide at the NFC readers.

8.6 Applications
Object Tracking: We show the CDF of the tracking ac-

curacy of tagged and untagged objects in Fig. 8 (a) and (c),

respectively. TextileSense is able to locate a tagged object

within amedian accuracy of 2.84 𝑐𝑚. Consider the case where

a wallet/watch is accidentally left on the couch. TextileSense

is able to quickly detect this situation through its algorithm

and notify the user. Further, our system can potentially sup-

port gaming such as augmented and virtual reality where

the location of objects needs to be known. We show that

TextileSense can detect the location of an NFC tagged plush

toy on the TextileSense couch.

User Interface: A TextileSense furniture can be potentially

used as a touchless screen, and we evaluate this possibility

in Fig. 8 (b). TextileSense can locate a human hand with a

median error of 1.53 𝑐𝑚 when the user puts his/her hand in

close vicinity, making it a promising candidate for touchless

screen interfaces. With its ability to locate a human hand,

TextileSense can thus track a user’s hand once its presence

is detected. The user can move his/her hand to form fine-

grained gestures, and TextileSense is expected to perform

consistent localization to keep tracking and analyzing. We

show that the user can finely adjust TV volume by waving

the hand over different locations on top of furniture. Here’s a

video of our system in action : https://youtu.be/Ieil0NQlk_M.

Pose Estimation: TextileSense can also be used to sense

the user when the user sits on the couch. Specifically, it can

track the location of the user and also the posture of the user.

We demonstrate that our system can sense the user’s posture

– lying or sitting on the couch with 91.3% accuracy.

9 DISCUSSION
Security and Privacy Implications: We note that Textile-

Sense can detect and locate tags as well as objects within

close proximity (few tens of centimeters) of the TextileSense

furniture. We believe the relatively short range of the system

limits privacy risks. We also note that it can facilitate reading

https://youtu.be/Ieil0NQlk_M
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NFC tags at about a four-fold higher distance compared to

traditional commercial NFC, which is a potential security

vulnerability. While security is beyond the scope of this pa-

per, past solutions [11, 32, 35] that protect NFC tags from

malicious scanning can limit the scope of such attacks.

Evaluation of Limitations: We emphasize a few impor-

tant limitations of our solution: (1) Our evaluation in Sec. 8.5

considers up to four NFC-tagged objects with up to 30 cm of

spacing. However, TextileSense cannot deal with extremely

small spacing (< 1.5 𝑐𝑚) due to the strong coupling between

the objects themselves. (2) TextileSense’s performance de-

grades due to bending, particularly acute bending, as we

evaluate in Sec. 8.2, although it continues to perform at an

accuracy of few centimeters.

Cost, Power and Scalability: We consider three factors:

(1) Cost: While we prototype TextileSense using multiple

USRPs in this paper, our proposed architecture can be eas-

ily adapted to a commercial NFC reader module by using

low-cost off-the-shelf phase shifters [2] (less than $25) and

textile coil antennas. (2) Power: The power consumption of

such a TextileSense system would be less than 100-200 mW,

because of the high efficiency of the wireless power trans-

fer in the near-field. (3) Scalability: Our evaluation shows

TextileSense can detect and localize four NFC tags placed

in close proximity. While tag signal collisions might be a

potential challenge if there are many NFC tags in the range

of TextileSense, the problem can be mitigated using the anti-

collision scheme in the NFC protocol that only queries one

tag at a time by leveraging the tag’s unique ID.

Advantages compared to RFID localization systems:
TextileSense supports locating both NFC-tagged objects and

untagged conductive objects (e.g., human hand or metal),

while traditional RFID localization systems focus on locating

RFID tags. Further, TextileSense focuses on an indoor smart

home environment where NFC technologies are much more

ubiquitous than RFID, such as contactless key fobs, credit

cards, ID cards, mobile phones, etc.

10 RELATEDWORK
Magnetic Induction: The underlying physics of Textile-

Sense relies on the magneto-inductive principle, which is

primarily used as the method for wireless power transfer

[5, 41]. Prior work has used relays [7, 10, 20, 38, 39] and

multi-antenna systems [12, 37, 45] to improve wireless power

transfer based on magnetic induction. Recent work also uses

near-fieldMIMO to improve communication throughput [18].

While past solutions focus on power delivery and channel

capacity, we build a practical textile MIMO system in the

commercial NFC context for object localization and user

interface for future building infrastructure.

Wireless Sensing: We have seen rich literature on using

various wireless technologies to sense our surrounding envi-

ronment. Past work has proposed Wi-Fi based device-free

approach for localization [22], imaging [16], gesture clas-

sification [4] and material recognition [48]. Recently, pas-

sive RFID tags have been embedded in daily objects like

clothing to enable a shape-aware environment [14, 15]. Ad-

ditionally, recent work [34] proposes locating a customized

coil-mounted receiver in the near-field without beamforming

optimal energy and therefore operates at very short range

(few cm). This paper instead focuses on detecting and locat-

ing ordinary conductive objects and NFC-enabled objects in

close proximity to the TextileSense furniture.

Smart Fabrics and Materials: Recent work has shown

that ordinary fabrics and soft materials are imbued with sens-

ing properties, such as recognizing speech [43], detecting

temperature [27], pressure [36], humidity [19], body geome-

tries [28], and activities [13, 17, 26, 31, 33]. Most of these

wearable technologies are enabled by connecting off-the-

shelf sensors and other circuit components using textile con-

ductive fabrics and threads. Textile antennas for passive NFC

and RFID tags [6] are also proposed for body centric and

wearable applications. While recent work [9, 42] uses flexible

conductive threads for object tracking, the sensing distance

for NFC-tagged object is limited up to 3 𝑐𝑚. In contrast, Tex-

tileSense builds the first textile MIMO systems for proximate

object detection and localization up to 20.3 𝑐𝑚.

11 CONCLUSION
This paper designs TextileSense, an NFC-based system that

locates objects (tagged or untagged) in the surroundings

using multiple textile coils. TextileSense senses the voltage

variation of its transmitter coils induced by proximate ob-

jects to detect them and identify their location. We optimize

the geometry of the coils and fabricate them to remain ro-

bust to fabric bending and crumpling. Through extensive

experiments, we demonstrate 𝑐𝑚-level localization of both

tagged and untagged objects in the near-field.
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