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Drones are increasingly useful in obstacle-rich environments.
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Drones must make obstacle-specific responses to maximize utility

The sensing system must be infrastructure-free and contained entirely on the drone.



Current infrastructure-free sensing solutions cannot enable this.
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IntuWition

A complementary WiFi-Based sensing system that can detect
material of obstacles in line-of-sight and non-line-of-sight settings.

* Uses existing WiFi radio already on many drones
* Does not assume infrastructure

* Applies beyond drones — vehicles, product testing, disasters, etc.



IntuWition comprises two major parts:

1. Localization
2. Material Semsing
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Radar Polarimetry can measure material-specific responses
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To bring Radar Polarimetry to WiFi, a vertically
polarized signal must be transmitted and received
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Challenge #1: Multi-Bounce




Since the a values of multi-bounce are relatec
to the single-reflection, these can be removec

Algorithm looks for alpha and locations that are consistent with physics of multi-
bounce, to eliminate them as spurious (details in paper)
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Challenge

2: Several Variations in Material
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Solution: Devise machine learning models

Material Classification Accuracy by Model
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ML model accounts for additional challenges: location, texture — details in the paper.
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IntuWition’s System Overview:
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We tested polarimetry as a material identification
feature across a variety of materials and platforms.
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Our system showed high classification rates
for five classes of materials.

5 classes, sheets of material
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Further, our system also worked well for
classifying real-life objects as wood or metal.

Wood vs. Metal Classification of Real-Life Objects
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Limitations

* (Can’t detect signal when too weak, too occluded, or too many multi-bounce
effects

e Cannot distinguish materials of similar polarization characteristics

* May respond excessively to surface characteristics (e.g. clothing)



IntuWition is a system that explores sensing
the material and location of occluded objects

Uses COTS WiFi radios
Our evaluation demonstrates promising accuracy in material classification
Applies broadly beyond drones: vehicles, disaster response, product testing, etc.

Future work includes more objects, on-board processing, and sensor fusion

www.witechlab.com/intuwition
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